TY - JOUR
T1 - Antenna impedance matching with neural networks
AU - Hemminger, Thomas L.
N1 - Copyright:
Copyright 2011 Elsevier B.V., All rights reserved.
PY - 2005/10
Y1 - 2005/10
N2 - Impedance matching between transmission lines and antennas is an important and fundamental concept in electromagnetic theory. One definition of antenna impedance is the resistance and reactance seen at the antenna terminals or the ratio of electric to magnetic fields at the input. The primary intent of this paper is real-time compensation for changes in the driving point impedance of an antenna due to frequency deviations. In general, the driving point impedance of an antenna or antenna array is computed by numerical methods such as the method of moments or similar techniques. Some configurations do lend themselves to analytical solutions, which will be the primary focus of this work. This paper employs a neural control system to match antenna feed lines to two common antennas during frequency sweeps. In practice, impedance matching is performed off-line with Smith charts or relatively complex formulas but they rarely perform optimally over a large bandwidth. There have been very few attempts to compensate for matching errors while the transmission system is in operation and most techniques have been targeted to a relatively small range of frequencies. The approach proposed here employs three small neural networks to perform real-time impedance matching over a broad range of frequencies during transmitter operation. Double stub tuners are being explored in this paper but the approach can certainly be applied to other methodologies. The ultimate purpose of this work is the development of an inexpensive microcontroller-based system.
AB - Impedance matching between transmission lines and antennas is an important and fundamental concept in electromagnetic theory. One definition of antenna impedance is the resistance and reactance seen at the antenna terminals or the ratio of electric to magnetic fields at the input. The primary intent of this paper is real-time compensation for changes in the driving point impedance of an antenna due to frequency deviations. In general, the driving point impedance of an antenna or antenna array is computed by numerical methods such as the method of moments or similar techniques. Some configurations do lend themselves to analytical solutions, which will be the primary focus of this work. This paper employs a neural control system to match antenna feed lines to two common antennas during frequency sweeps. In practice, impedance matching is performed off-line with Smith charts or relatively complex formulas but they rarely perform optimally over a large bandwidth. There have been very few attempts to compensate for matching errors while the transmission system is in operation and most techniques have been targeted to a relatively small range of frequencies. The approach proposed here employs three small neural networks to perform real-time impedance matching over a broad range of frequencies during transmitter operation. Double stub tuners are being explored in this paper but the approach can certainly be applied to other methodologies. The ultimate purpose of this work is the development of an inexpensive microcontroller-based system.
UR - http://www.scopus.com/inward/record.url?scp=33644686271&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=33644686271&partnerID=8YFLogxK
U2 - 10.1142/S0129065705000335
DO - 10.1142/S0129065705000335
M3 - Article
C2 - 16278940
AN - SCOPUS:33644686271
SN - 0129-0657
VL - 15
SP - 357
EP - 361
JO - International journal of neural systems
JF - International journal of neural systems
IS - 5
ER -