TY - JOUR
T1 - Anti-inflammatory effects of methoxyphenolic compounds on human airway cells
AU - Houser, Kenneth R.
AU - Johnson, David K.
AU - Ishmael, Faoud
PY - 2012
Y1 - 2012
N2 - Background: The respiratory epithelium plays a central role in the inflammatory response in asthma and other diseases. Methoxyphenolic compounds are purported to be effective anti-inflammatory agents, but their effects on the airway epithelium have not been well characterized. Methods. Human airway cells were stimulated with TNF-α in the presence or absence of 4-substituted methoxyphenols and resveratrol. The expression of various cytokines was measured by qPCR, ELISAs, and protein arrays. Reactive oxygen species (ROS) production was measured with a reactive fluorescent probe (3',6'-diacetate-2',7'- dichlorofluorescein). Activation of NF-κB was measured by nuclear translocation and phosphorylation. Ribonuclear protein association with mRNA was assessed with a biotin-RNA affinity isolation assay. Results: Multiple inflammatory mediators were inhibited by methoxyphenols, including: CCL2, CCL5, IL-6, IL-8, ICAM-1, MIF, CXCL1, CXCL10, and Serpin E1. IC 50values were obtained for each compound that showed significant anti-inflammatory activity: diapocynin (20.3 μM), resveratrol (42.7 μM), 2-methoxyhydroquinone (64.3 μM), apocynin (146.6 μM), and 4-amino-2-methoxyphenol (410 μM). The anti-inflammatory activity did not correlate with inhibition of reactive oxygen species production or NF-κB activation. However, methoxyphenols inhibited binding of the RNA-binding protein HuR to mRNA, indicating that they may act post-transcriptionally. Conclusions: Methoxyphenols demonstrate anti-inflammatory activity in human airway cells. More potent compounds that act via similar mechanisms may have therapeutic potential as novel anti-inflammatory agents.
AB - Background: The respiratory epithelium plays a central role in the inflammatory response in asthma and other diseases. Methoxyphenolic compounds are purported to be effective anti-inflammatory agents, but their effects on the airway epithelium have not been well characterized. Methods. Human airway cells were stimulated with TNF-α in the presence or absence of 4-substituted methoxyphenols and resveratrol. The expression of various cytokines was measured by qPCR, ELISAs, and protein arrays. Reactive oxygen species (ROS) production was measured with a reactive fluorescent probe (3',6'-diacetate-2',7'- dichlorofluorescein). Activation of NF-κB was measured by nuclear translocation and phosphorylation. Ribonuclear protein association with mRNA was assessed with a biotin-RNA affinity isolation assay. Results: Multiple inflammatory mediators were inhibited by methoxyphenols, including: CCL2, CCL5, IL-6, IL-8, ICAM-1, MIF, CXCL1, CXCL10, and Serpin E1. IC 50values were obtained for each compound that showed significant anti-inflammatory activity: diapocynin (20.3 μM), resveratrol (42.7 μM), 2-methoxyhydroquinone (64.3 μM), apocynin (146.6 μM), and 4-amino-2-methoxyphenol (410 μM). The anti-inflammatory activity did not correlate with inhibition of reactive oxygen species production or NF-κB activation. However, methoxyphenols inhibited binding of the RNA-binding protein HuR to mRNA, indicating that they may act post-transcriptionally. Conclusions: Methoxyphenols demonstrate anti-inflammatory activity in human airway cells. More potent compounds that act via similar mechanisms may have therapeutic potential as novel anti-inflammatory agents.
UR - http://www.scopus.com/inward/record.url?scp=84862794090&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=84862794090&partnerID=8YFLogxK
U2 - 10.1186/1476-9255-9-6
DO - 10.1186/1476-9255-9-6
M3 - Article
C2 - 22414048
AN - SCOPUS:84862794090
SN - 1476-9255
VL - 9
JO - Journal of Inflammation
JF - Journal of Inflammation
M1 - 6
ER -