TY - JOUR
T1 - Antioxidant activity of cysteine, tryptophan, and methionine residues in continuous phase β-lactoglobulin in oil-in-water emulsions
AU - Elias, Ryan
AU - McClements, D. Julian
AU - Decker, Eric A.
PY - 2005/12/28
Y1 - 2005/12/28
N2 - Proteins dispersed in the continuous phase of oil-in-water emulsions are capable of inhibiting lipid oxidation reactions. The antioxidant activity of these proteins is thought to encompass both free radical scavenging by amino acid residues and chelation of prooxidative transition metals; however, the precise mechanism by which this occurs remains unclear. In this study, the oxidative stability of cysteine, tryptophan, and methionine residues in continuous phase β-lactoglobulin (β-Lg) in a Brij-stabilized menhaden oil-in-water emulsion was determined. The presence of low concentrations of continuous phase β-Lg (250 and 750 μg/mL) significantly inhibited lipid oxidation as determined by lipid hydroperoxides and thiobarbituric acid reactive substances analysis. It was observed that cysteine oxidized before tryptophan in β-Lg, and both residues oxidized before lipid oxidation could be detected. No oxidation of the methionine residues of β-Lg was observed despite its reported high oxidative susceptibility. It is conceivable that surface exposure of amino acid residues greatly affects their oxidation kinetics, which may explain why some residues are preferentially oxidized relative to others. Further elucidation of the mechanisms governing free radical scavenging of amino acids could lead to more effective applications of proteins as antioxidants within oil-in-water food emulsions.
AB - Proteins dispersed in the continuous phase of oil-in-water emulsions are capable of inhibiting lipid oxidation reactions. The antioxidant activity of these proteins is thought to encompass both free radical scavenging by amino acid residues and chelation of prooxidative transition metals; however, the precise mechanism by which this occurs remains unclear. In this study, the oxidative stability of cysteine, tryptophan, and methionine residues in continuous phase β-lactoglobulin (β-Lg) in a Brij-stabilized menhaden oil-in-water emulsion was determined. The presence of low concentrations of continuous phase β-Lg (250 and 750 μg/mL) significantly inhibited lipid oxidation as determined by lipid hydroperoxides and thiobarbituric acid reactive substances analysis. It was observed that cysteine oxidized before tryptophan in β-Lg, and both residues oxidized before lipid oxidation could be detected. No oxidation of the methionine residues of β-Lg was observed despite its reported high oxidative susceptibility. It is conceivable that surface exposure of amino acid residues greatly affects their oxidation kinetics, which may explain why some residues are preferentially oxidized relative to others. Further elucidation of the mechanisms governing free radical scavenging of amino acids could lead to more effective applications of proteins as antioxidants within oil-in-water food emulsions.
UR - http://www.scopus.com/inward/record.url?scp=30544431989&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=30544431989&partnerID=8YFLogxK
U2 - 10.1021/jf0521698
DO - 10.1021/jf0521698
M3 - Article
C2 - 16366723
AN - SCOPUS:30544431989
SN - 0021-8561
VL - 53
SP - 10248
EP - 10253
JO - Journal of agricultural and food chemistry
JF - Journal of agricultural and food chemistry
IS - 26
ER -