Antireflection properties and solar cell application of silicon nanoscructures

Huihui Yue, Rui Jia, Chen Chen, Wuchang Ding, Deqi Wu, Xinyu Liu

Research output: Contribution to journalArticlepeer-review

5 Scopus citations

Abstract

Silicon nanowire arrays (SiNWAs) are fabricated on polished pyramids of textured Si using an aqueous chemical etching method. The silicon nanowires themselves or hybrid structures of nanowires and pyramids both show strong anti-reflectance abilities in the wavelength region of 300-1000 nm, and reflectances of 2.52% and less than 8% are achieved, respectively. A 12.45% SiNWAs-textured solar cell (SC) with a short circuit current of 34.82 mA/cm 2 and open circuit voltage (Voc) of 594 mV was fabricated on 125 × 125 mm2 Si using a conventional process including metal grid printing. It is revealed that passivation is essential for hybrid structure textured SCs, and Voc can be enlarged by 28.6% from 420 V to 560 mV after the passivation layer is deposited. The loss mechanism of SiNWA SC was investigated in detail by systematic comparison of the basic parameters and external quantum efficiency (EQE)of samples with different fabrication processes. It is proved that surface passivation and fabrication of a metal grid are critical for high efficiency SiNWA SC, and the performance of SiNWA SC could be improved when fabricated on a substrate with an initial PN junction.

Original languageEnglish (US)
Article number084005
JournalJournal of Semiconductors
Volume32
Issue number8
DOIs
StatePublished - Aug 2011

All Science Journal Classification (ASJC) codes

  • Electronic, Optical and Magnetic Materials
  • Condensed Matter Physics
  • Electrical and Electronic Engineering
  • Materials Chemistry

Fingerprint

Dive into the research topics of 'Antireflection properties and solar cell application of silicon nanoscructures'. Together they form a unique fingerprint.

Cite this