Apo- and holo-transferrin differentially interact with hephaestin and ferroportin in a novel mechanism of cellular iron release regulation

Stephanie L. Baringer, Kondaiah Palsa, Vladimir S. Spiegelman, Ian A. Simpson, James R. Connor

Research output: Contribution to journalArticlepeer-review

10 Scopus citations

Abstract

Background: Apo- (iron free) and holo- (iron bound) transferrin (Tf) participate in precise regulation of brain iron uptake at endothelial cells of the blood–brain barrier. Apo-Tf indicates an iron-deficient environment and stimulates iron release, while holo-Tf indicates an iron sufficient environment and suppresses additional iron release. Free iron is exported through ferroportin, with hephaestin as an aid to the process. Until now, the molecular mechanisms of apo- and holo-Tf influence on iron release was largely unknown. Methods: Here we use a variety of cell culture techniques, including co-immunoprecipitation and proximity ligation assay, in iPSC-derived endothelial cells and HEK 293 cells to investigate the mechanism by which apo- and holo-Tf influence cellular iron release. Given the established role of hepcidin in regulating cellular iron release, we further explored the relationship of hepcidin to transferrin in this model. Results: We demonstrate that holo-Tf induces the internalization of ferroportin through the established ferroportin degradation pathway. Furthermore, holo-Tf directly interacts with ferroportin, whereas apo-Tf directly interacts with hephaestin. Only pathophysiological levels of hepcidin disrupt the interaction between holo-Tf and ferroportin, but similar hepcidin levels are unable to interfere with the interaction between apo-Tf and hephaestin. The disruption of the holo-Tf and ferroportin interaction by hepcidin is due to hepcidin’s ability to more rapidly internalize ferroportin compared to holo-Tf. Conclusions: These novel findings provide a molecular mechanism for apo- and holo-Tf regulation of iron release from endothelial cells. They further demonstrate how hepcidin impacts these protein–protein interactions, and offer a model for how holo-Tf and hepcidin cooperate to suppress iron release. These results expand on our previous reports on mechanisms mediating regulation of brain iron uptake to provide a more thorough understanding of the regulatory mechanisms mediating cellular iron release in general.

Original languageEnglish (US)
Article number36
JournalJournal of Biomedical Science
Volume30
Issue number1
DOIs
StatePublished - Dec 2023

All Science Journal Classification (ASJC) codes

  • Endocrinology, Diabetes and Metabolism
  • Molecular Biology
  • Clinical Biochemistry
  • Cell Biology
  • Biochemistry, medical
  • Pharmacology (medical)

Fingerprint

Dive into the research topics of 'Apo- and holo-transferrin differentially interact with hephaestin and ferroportin in a novel mechanism of cellular iron release regulation'. Together they form a unique fingerprint.

Cite this