Application of a 'parallelized coupled Navier-Stokes/Vortex-Panel solver' to the NREL Phase VI rotor

Sven Schmitz, Jean Jacques Chattot

Research output: Chapter in Book/Report/Conference proceedingConference contribution

1 Scopus citations

Abstract

A commercially available Navier-Stokes solver, CFX V5.6, is coupled with an in-house developed Vortex-Panel method for the numerical analysis of wind turbines. The Navier-Stokes zone is confined to the near-field around one wind turbine blade, the Vortex-Panel method models the entire vortex sheet of a two-bladed rotor and accounts for the far-field. This coupling methodology reduces both numerical diffusion and computational cost. The coupled solver is parallelized on a cluster of 4 processors. The parallelized coupled solver (PCS) is applied to some distinctive cases of the NREL Phase VI rotor configuration with and without flow separation under steady and no-yaw conditions. Fully turbulent flow is assumed using the k-ε and k-ω turbulence models. Calculations performed with the coupled solver show very good agreement with experiments for fully attached flow. For separated and partially stalled flow, the k-ε model overpredicts rotor power while the k-ω model still shows better agreement with experiments. Discrepancies between the two turbulence models are related to different prediction of the onset of separation. This is revealed by 2D airfoil data of the S809 profile.

Original languageEnglish (US)
Title of host publicationCollection of the 2005 ASME Wind Energy Symposium Technical Papers at the 43rd AIAA Aerospace Sciences Meeting and Exhibit
Pages167-179
Number of pages13
StatePublished - 2005
Event2005 ASME Wind Energy Symposium at the 43rd AIAA Aerospace Sciences Meeting and Exhibit - Reno, NV, United States
Duration: Jan 10 2005Jan 13 2005

Publication series

NameCollection of the 2005 ASME Wind Energy Symposium Technical Papers at the 43rd AIAA Aerospace Sciences Meeting and Exhibit

Other

Other2005 ASME Wind Energy Symposium at the 43rd AIAA Aerospace Sciences Meeting and Exhibit
Country/TerritoryUnited States
CityReno, NV
Period1/10/051/13/05

All Science Journal Classification (ASJC) codes

  • General Engineering

Fingerprint

Dive into the research topics of 'Application of a 'parallelized coupled Navier-Stokes/Vortex-Panel solver' to the NREL Phase VI rotor'. Together they form a unique fingerprint.

Cite this