Application of genetic algorithm-based support vector machines for prediction of soil liquefaction

Xinhua Xue, Ming Xiao

Research output: Contribution to journalArticlepeer-review

28 Scopus citations


This paper presents a hybrid genetic algorithm (GA) and support vector machine (SVM) techniques to predict the potential of soil liquefaction. GA is employed in selecting the optimal values of the kernel function and the penalty parameter in SVM model to improve the forecasting accuracy. The database used in this study includes 109 CPT-based field observations from five major earthquakes between 1964 and 1983. Several important parameters, including the cone resistance, total vertical stress, effective vertical stress, mean grain size, normalized peak horizontal acceleration at ground surface, cyclic stress ratio, and earthquake magnitude, were used as the input parameters, while the potential of soil liquefaction was the output parameter. The predictions from the GA-SVM model were compared with those from three methods: grid search (GS) method, artificial neural network (ANN) model, and C4.5 decision tree approach. The overall classification success rates for the entire dataset predicted by GA-SVM, ANN, C4.5 decision tree, and GS-SVM models are 97.25, 97.2, 96.3, and 92.66 %, respectively. The study concluded that the proposed GA-SVM model improves the classification accuracy and is a feasible method in predicting soil liquefaction.

Original languageEnglish (US)
Article number874
JournalEnvironmental Earth Sciences
StatePublished - May 1 2016

All Science Journal Classification (ASJC) codes

  • Global and Planetary Change
  • Environmental Chemistry
  • Water Science and Technology
  • Soil Science
  • Pollution
  • Geology
  • Earth-Surface Processes


Dive into the research topics of 'Application of genetic algorithm-based support vector machines for prediction of soil liquefaction'. Together they form a unique fingerprint.

Cite this