Application of Machine Learning for Predicting User Preferences in Optimal Scheduling of Smart Appliances

Milad Sadat-Mohammadi, Morteza Nazari-Heris, Alireza Ameli, Somayeh Asadi, Behnam Mohammadi-Ivatloo, Houtan Jebelli

Research output: Chapter in Book/Report/Conference proceedingChapter

3 Scopus citations

Abstract

Hourly electricity rates has stimulated the implementation of home energy management systems to reduce the monthly electrical bill in the residential sector. Flexible appliances, whose operation can be delayed and shifted to the off-peak hours, are controlled by the home energy management system considering the scheduling constraint. Scheduling constraints such as the maximum length of the scheduling window are defined by users at the beginning of the scheduling process; then, the scheduling process is initiated. However, the current approach can be challenging for daily usage as it requires the user to update the constraints manually. In this study, we aim to propose a novel approach using a machine learning algorithm to predict the scheduling constraints without user intervention. In this approach, the collected energy consumption profile of each smart appliance can be used to learn the hidden relationship between the constraints and key factors; then, the trained model can predict the desired scheduling window for future observations. By doing so, the scheduling process can be performed by the home energy management system automatically. The proposed approach is validated through implementation on a real dataset where the results showed that it has high accuracy in predicting the desired length of the scheduling window.

Original languageEnglish (US)
Title of host publicationPower Systems
PublisherSpringer Science and Business Media Deutschland GmbH
Pages345-355
Number of pages11
DOIs
StatePublished - 2021

Publication series

NamePower Systems
ISSN (Print)1612-1287
ISSN (Electronic)1860-4676

All Science Journal Classification (ASJC) codes

  • Energy Engineering and Power Technology
  • Electrical and Electronic Engineering

Fingerprint

Dive into the research topics of 'Application of Machine Learning for Predicting User Preferences in Optimal Scheduling of Smart Appliances'. Together they form a unique fingerprint.

Cite this