TY - GEN
T1 - Approximately counting embeddings into random graphs
AU - Fürer, Martin
AU - Kasiviswanathan, Shiva Prasad
PY - 2008
Y1 - 2008
N2 - Let H be a graph, and let C H (G) be the number of (subgraph isomorphic) copies of H contained in a graph G. We investigate the fundamental problem of estimating C H (G). Previous results cover only a few specific instances of this general problem, for example, the case when H has degree at most one (monomer-dimer problem). In this paper, we present the first general subcase of the subgraph isomorphism counting problem which is almost always efficiently approximable. The results rely on a new graph decomposition technique. Informally, the new decomposition is a labeling of the vertices generating a sequence of bipartite graphs. The decomposition permits us to break the problem of counting embeddings of large subgraphs into that of counting embeddings of small subgraphs. Using this, we present a simple randomized algorithm for the counting problem. For all decomposable graphs H and all graphs G, the algorithm is an unbiased estimator. Furthermore, for all graphs H having a decomposition where each of the bipartite graphs generated is small and almost all graphs G, the algorithm is a fully polynomial randomized approximation scheme. We show that the graph classes of H for which we obtain a fully polynomial randomized approximation scheme for almost all G includes graphs of degree at most two, bounded-degree forests, bounded-width grid graphs, subdivision of bounded-degree graphs, and major subclasses of outerplanar graphs, series-parallel graphs and planar graphs, whereas unbounded-width grid graphs are excluded.
AB - Let H be a graph, and let C H (G) be the number of (subgraph isomorphic) copies of H contained in a graph G. We investigate the fundamental problem of estimating C H (G). Previous results cover only a few specific instances of this general problem, for example, the case when H has degree at most one (monomer-dimer problem). In this paper, we present the first general subcase of the subgraph isomorphism counting problem which is almost always efficiently approximable. The results rely on a new graph decomposition technique. Informally, the new decomposition is a labeling of the vertices generating a sequence of bipartite graphs. The decomposition permits us to break the problem of counting embeddings of large subgraphs into that of counting embeddings of small subgraphs. Using this, we present a simple randomized algorithm for the counting problem. For all decomposable graphs H and all graphs G, the algorithm is an unbiased estimator. Furthermore, for all graphs H having a decomposition where each of the bipartite graphs generated is small and almost all graphs G, the algorithm is a fully polynomial randomized approximation scheme. We show that the graph classes of H for which we obtain a fully polynomial randomized approximation scheme for almost all G includes graphs of degree at most two, bounded-degree forests, bounded-width grid graphs, subdivision of bounded-degree graphs, and major subclasses of outerplanar graphs, series-parallel graphs and planar graphs, whereas unbounded-width grid graphs are excluded.
UR - http://www.scopus.com/inward/record.url?scp=51849120152&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=51849120152&partnerID=8YFLogxK
U2 - 10.1007/978-3-540-85363-3_33
DO - 10.1007/978-3-540-85363-3_33
M3 - Conference contribution
AN - SCOPUS:51849120152
SN - 3540853626
SN - 9783540853626
T3 - Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
SP - 416
EP - 429
BT - Approximation, Randomization and Combinatorial Optimization
T2 - 11th International Workshop on Approximation Algorithms for Combinatorial Optimization Problems, APPROX 2008 and 12th International Workshop on Randomization and Computation, RANDOM 2008
Y2 - 25 August 2008 through 27 August 2008
ER -