TY - JOUR
T1 - Architecture and potential roles of a delta-class glutathione S-transferase in protecting honey bee from agrochemicals
AU - Moural, Timothy W.
AU - Koirala B K, Sonu
AU - Bhattarai, Gaurab
AU - He, Ziming
AU - Guo, Haoyang
AU - Phan, Ngoc T.
AU - Rajotte, Edwin G.
AU - Biddinger, David J.
AU - Hoover, Kelli
AU - Zhu, Fang
N1 - Publisher Copyright:
© 2023 Elsevier Ltd
PY - 2024/2
Y1 - 2024/2
N2 - The European honey bee, Apis mellifera, serves as the principle managed pollinator species globally. In recent decades, honey bee populations have been facing serious health threats from combined biotic and abiotic stressors, including diseases, limited nutrition, and agrochemical exposure. Understanding the molecular mechanisms underlying xenobiotic adaptation of A. mellifera is critical, considering its extensive exposure to phytochemicals and agrochemicals present in the environment. In this study, we conducted a comprehensive structural and functional characterization of AmGSTD1, a delta class glutathione S-transferase (GST), to unravel its roles in agrochemical detoxification and antioxidative stress responses. We determined the 3-dimensional (3D) structure of a honey bee GST using protein crystallography for the first time, providing new insights into its molecular structure. Our investigations revealed that AmGSTD1 metabolizes model substrates, including 1-chloro-2,4-dinitrobenzene (CDNB), p-nitrophenyl acetate (PNA), phenylethyl isothiocyanate (PEITC), propyl isothiocyanate (PITC), and the oxidation byproduct 4-hydroxynonenal (HNE). Moreover, we discovered that AmGSTD1 exhibits binding affinity with the fluorophore 8-Anilinonaphthalene-1-sulfonic acid (ANS), which can be inhibited with various herbicides, fungicides, insecticides, and their metabolites. These findings highlight the potential contribution of AmGSTD1 in safeguarding honey bee health against various agrochemicals, while also mitigating oxidative stress resulting from exposure to these substances.
AB - The European honey bee, Apis mellifera, serves as the principle managed pollinator species globally. In recent decades, honey bee populations have been facing serious health threats from combined biotic and abiotic stressors, including diseases, limited nutrition, and agrochemical exposure. Understanding the molecular mechanisms underlying xenobiotic adaptation of A. mellifera is critical, considering its extensive exposure to phytochemicals and agrochemicals present in the environment. In this study, we conducted a comprehensive structural and functional characterization of AmGSTD1, a delta class glutathione S-transferase (GST), to unravel its roles in agrochemical detoxification and antioxidative stress responses. We determined the 3-dimensional (3D) structure of a honey bee GST using protein crystallography for the first time, providing new insights into its molecular structure. Our investigations revealed that AmGSTD1 metabolizes model substrates, including 1-chloro-2,4-dinitrobenzene (CDNB), p-nitrophenyl acetate (PNA), phenylethyl isothiocyanate (PEITC), propyl isothiocyanate (PITC), and the oxidation byproduct 4-hydroxynonenal (HNE). Moreover, we discovered that AmGSTD1 exhibits binding affinity with the fluorophore 8-Anilinonaphthalene-1-sulfonic acid (ANS), which can be inhibited with various herbicides, fungicides, insecticides, and their metabolites. These findings highlight the potential contribution of AmGSTD1 in safeguarding honey bee health against various agrochemicals, while also mitigating oxidative stress resulting from exposure to these substances.
UR - http://www.scopus.com/inward/record.url?scp=85181771235&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85181771235&partnerID=8YFLogxK
U2 - 10.1016/j.chemosphere.2023.141089
DO - 10.1016/j.chemosphere.2023.141089
M3 - Article
C2 - 38163465
AN - SCOPUS:85181771235
SN - 0045-6535
VL - 350
JO - Chemosphere
JF - Chemosphere
M1 - 141089
ER -