Architecture, chip, and package co-design flow for 2.5D IC design enabling heterogeneous IP reuse

Jinwoo Kim, Gauthaman Murali, Heechun Park, Eric Qin, Hyoukjun Kwon, Venkata Chaitanya, Krishna Chekuri, Nihar Dasari, Arvind Singh, Minah Lee, Hakki Mert Torun, Kallol Roy, Madhavan Swaminathan, Saibal Mukhopadhyay, Tushar Krishna, Sung Kyu Lim

Research output: Chapter in Book/Report/Conference proceedingConference contribution

34 Scopus citations

Abstract

A new trend in complex SoC design is chiplet-based IP reuse using 2.5D integration. In this paperwe present a highly-integrated design flow that encompasses architecture, circuit, and package to build and simulate heterogeneous 2.5D designs. We chipletize each IP by adding logical protocol translators and physical interface modules. These chiplets are placed/routed on a silicon interposer next. Our package models are then used to calculate PPA and signal/power integrity of the overall system. Our design space exploration study using our tool flow shows that 2.5D integration incurs 2.1x PPA overhead compared with 2D SoC counterpart.

Original languageEnglish (US)
Title of host publicationProceedings of the 56th Annual Design Automation Conference 2019, DAC 2019
PublisherInstitute of Electrical and Electronics Engineers Inc.
ISBN (Electronic)9781450367257
DOIs
StatePublished - Jun 2 2019
Event56th Annual Design Automation Conference, DAC 2019 - Las Vegas, United States
Duration: Jun 2 2019Jun 6 2019

Publication series

NameProceedings - Design Automation Conference
ISSN (Print)0738-100X

Conference

Conference56th Annual Design Automation Conference, DAC 2019
Country/TerritoryUnited States
CityLas Vegas
Period6/2/196/6/19

All Science Journal Classification (ASJC) codes

  • Computer Science Applications
  • Control and Systems Engineering
  • Electrical and Electronic Engineering
  • Modeling and Simulation

Fingerprint

Dive into the research topics of 'Architecture, chip, and package co-design flow for 2.5D IC design enabling heterogeneous IP reuse'. Together they form a unique fingerprint.

Cite this