Architecture of Kepler's multi-transiting systems. II. New investigations with twice as many candidates

Daniel C. Fabrycky, Jack J. Lissauer, Darin Ragozzine, Jason F. Rowe, Jason H. Steffen, Eric Agol, Thomas Barclay, Natalie Batalha, William Borucki, David R. Ciardi, Eric B. Ford, Thomas N. Gautier, John C. Geary, Matthew J. Holman, Jon M. Jenkins, Jie Li, Robert C. Morehead, Robert L. Morris, Avi Shporer, Jeffrey C. SmithMartin Still, Jeffrey Van Cleve

Research output: Contribution to journalArticlepeer-review

518 Scopus citations

Abstract

We report on the orbital architectures of Kepler systems having multiple-planet candidates identified in the analysis of data from the first six quarters of Kepler data and reported by Batalha et al. (2013). These data show 899 transiting planet candidates in 365 multiple-planet systems and provide a powerful means to study the statistical properties of planetary systems. Using a generic mass-radius relationship, we find that only two pairs of planets in these candidate systems (out of 761 pairs total) appear to be on Hill-unstable orbits, indicating 96% of the candidate planetary systems are correctly interpreted as true systems. We find that planet pairs show little statistical preference to be near mean-motion resonances. We identify an asymmetry in the distribution of period ratios near first-order resonances (e.g., 2:1, 3:2), with an excess of planet pairs lying wide of resonance and relatively few lying narrow of resonance. Finally, based upon the transit duration ratios of adjacent planets in each system, we find that the interior planet tends to have a smaller transit impact parameter than the exterior planet does. This finding suggests that the mode of the mutual inclinations of planetary orbital planes is in the range 1.°0-2.°2, for the packed systems of small planets probed by these observations.

Original languageEnglish (US)
Article number146
JournalAstrophysical Journal
Volume790
Issue number2
DOIs
StatePublished - Aug 1 2014

All Science Journal Classification (ASJC) codes

  • Astronomy and Astrophysics
  • Space and Planetary Science

Fingerprint

Dive into the research topics of 'Architecture of Kepler's multi-transiting systems. II. New investigations with twice as many candidates'. Together they form a unique fingerprint.

Cite this