TY - JOUR
T1 - Arrested protein synthesis increases persister-like cell formation
AU - Kwan, Brian W.
AU - Valenta, John A.
AU - Benedik, Michael J.
AU - Wood, Thomas K.
PY - 2013/3
Y1 - 2013/3
N2 - Biofilms are associated with a wide variety of bacterial infections and pose a serious problem in clinical medicine due to their inherent resilience to antibiotic treatment. Within biofilms, persister cells comprise a small bacterial subpopulation that exhibits multidrug tolerance to antibiotics without undergoing genetic change. The low frequency of persister cell formation makes it difficult to isolate and study persisters, and bacterial persistence is often attributed to a quiescent metabolic state induced by toxins that are regulated through toxin-antitoxin systems. Here we mimic toxins via chemical pretreatments to induce high levels of persistence (10 to 100%) from an initial population of 0.01%. Pretreatment of Escherichia coli with (i) rifampin, which halts transcription, (ii) tetracycline, which halts translation, and (iii) carbonyl cyanide m-chlorophenylhydrazone, which halts ATP synthesis, all increased persistence dramatically. Using these compounds, we demonstrate that bacterial persistence results from halted protein synthesis and from environmental cues.
AB - Biofilms are associated with a wide variety of bacterial infections and pose a serious problem in clinical medicine due to their inherent resilience to antibiotic treatment. Within biofilms, persister cells comprise a small bacterial subpopulation that exhibits multidrug tolerance to antibiotics without undergoing genetic change. The low frequency of persister cell formation makes it difficult to isolate and study persisters, and bacterial persistence is often attributed to a quiescent metabolic state induced by toxins that are regulated through toxin-antitoxin systems. Here we mimic toxins via chemical pretreatments to induce high levels of persistence (10 to 100%) from an initial population of 0.01%. Pretreatment of Escherichia coli with (i) rifampin, which halts transcription, (ii) tetracycline, which halts translation, and (iii) carbonyl cyanide m-chlorophenylhydrazone, which halts ATP synthesis, all increased persistence dramatically. Using these compounds, we demonstrate that bacterial persistence results from halted protein synthesis and from environmental cues.
UR - http://www.scopus.com/inward/record.url?scp=84874049477&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=84874049477&partnerID=8YFLogxK
U2 - 10.1128/AAC.02135-12
DO - 10.1128/AAC.02135-12
M3 - Article
C2 - 23295927
AN - SCOPUS:84874049477
SN - 0066-4804
VL - 57
SP - 1468
EP - 1473
JO - Antimicrobial agents and chemotherapy
JF - Antimicrobial agents and chemotherapy
IS - 3
ER -