TY - GEN
T1 - ARROW guiding silicon photonic crystal fibres
AU - Healy, N.
AU - Sparks, J. R.
AU - He, R. R.
AU - Sazio, P. J.A.
AU - Badding, J. V.
AU - Peacock, A. C.
PY - 2011
Y1 - 2011
N2 - In this paper we describe a new class of silicon photonic crystal fibre (SiPCF) that brings together two powerful optical technologies, the photonic crystal fibre (PCF) and the semiconductor optical fibre. The PCF is now a well established fibre paradigm that has proven to be a very versatile waveguide and has found applications in nonlinear optics, fibre lasers, and sensors. The versatility of the PCF is due to its microstructured cladding which enables complex manipulation of the waveguide's characteristics, and also allows for enhanced light interaction with materials that are infiltrated into the cladding voids. The most typical form of semiconductor optical fibre has a fused silica cladding and guides light in the high refractive index semiconductor core. Although semiconductor optical fibres are a nascent technology, practical applications, such as nonlinear pulse shaping and all optical modulation, have begun to emerge in the last couple of years. However, material losses are currently preventing this fibre type from becoming a major disruptive technology and, with this in mind, we present the first steps to decouple the functionality of the semiconductor from its material losses. We achieve this by filling the holes of a modified total internal reflection guiding silica PCF with hydrogenated amorphous silicon (a-Si:H) inclusions. We will show that the resulting SiPCF guides light in the low loss core via the antiresonant reflecting optical waveguiding (ARROW) mechanism.
AB - In this paper we describe a new class of silicon photonic crystal fibre (SiPCF) that brings together two powerful optical technologies, the photonic crystal fibre (PCF) and the semiconductor optical fibre. The PCF is now a well established fibre paradigm that has proven to be a very versatile waveguide and has found applications in nonlinear optics, fibre lasers, and sensors. The versatility of the PCF is due to its microstructured cladding which enables complex manipulation of the waveguide's characteristics, and also allows for enhanced light interaction with materials that are infiltrated into the cladding voids. The most typical form of semiconductor optical fibre has a fused silica cladding and guides light in the high refractive index semiconductor core. Although semiconductor optical fibres are a nascent technology, practical applications, such as nonlinear pulse shaping and all optical modulation, have begun to emerge in the last couple of years. However, material losses are currently preventing this fibre type from becoming a major disruptive technology and, with this in mind, we present the first steps to decouple the functionality of the semiconductor from its material losses. We achieve this by filling the holes of a modified total internal reflection guiding silica PCF with hydrogenated amorphous silicon (a-Si:H) inclusions. We will show that the resulting SiPCF guides light in the low loss core via the antiresonant reflecting optical waveguiding (ARROW) mechanism.
UR - http://www.scopus.com/inward/record.url?scp=80052282385&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=80052282385&partnerID=8YFLogxK
U2 - 10.1109/CLEOE.2011.5942791
DO - 10.1109/CLEOE.2011.5942791
M3 - Conference contribution
AN - SCOPUS:80052282385
SN - 9781457705335
T3 - 2011 Conference on Lasers and Electro-Optics Europe and 12th European Quantum Electronics Conference, CLEO EUROPE/EQEC 2011
BT - 2011 Conference on Lasers and Electro-Optics Europe and 12th European Quantum Electronics Conference, CLEO EUROPE/EQEC 2011
T2 - 2011 Conference on Lasers and Electro-Optics Europe and 12th European Quantum Electronics Conference, CLEO EUROPE/EQEC 2011
Y2 - 22 May 2011 through 26 May 2011
ER -