Artificial gravity partially protects space-induced neurological deficits in Drosophila melanogaster

Siddhita D. Mhatre, Janani Iyer, Juli Petereit, Roberta M. Dolling-Boreham, Anastasia Tyryshkina, Amber M. Paul, Rachel Gilbert, Matthew Jensen, Rebekah J. Woolsey, Sulekha Anand, Marianne B. Sowa, David R. Quilici, Sylvain V. Costes, Santhosh Girirajan, Sharmila Bhattacharya

Research output: Contribution to journalArticlepeer-review

7 Scopus citations

Abstract

Spaceflight poses risks to the central nervous system (CNS), and understanding neurological responses is important for future missions. We report CNS changes in Drosophila aboard the International Space Station in response to spaceflight microgravity (SFμg) and artificially simulated Earth gravity (SF1g) via inflight centrifugation as a countermeasure. While inflight behavioral analyses of SFμg exhibit increased activity, postflight analysis displays significant climbing defects, highlighting the sensitivity of behavior to altered gravity. Multi-omics analysis shows alterations in metabolic, oxidative stress and synaptic transmission pathways in both SFμg and SF1g; however, neurological changes immediately postflight, including neuronal loss, glial cell count alterations, oxidative damage, and apoptosis, are seen only in SFμg. Additionally, progressive neuronal loss and a glial phenotype in SF1g and SFμg brains, with pronounced phenotypes in SFμg, are seen upon acclimation to Earth conditions. Overall, our results indicate that artificial gravity partially protects the CNS from the adverse effects of spaceflight.

Original languageEnglish (US)
Article number111279
JournalCell Reports
Volume40
Issue number10
DOIs
StatePublished - Sep 6 2022

All Science Journal Classification (ASJC) codes

  • General Biochemistry, Genetics and Molecular Biology

Fingerprint

Dive into the research topics of 'Artificial gravity partially protects space-induced neurological deficits in Drosophila melanogaster'. Together they form a unique fingerprint.

Cite this