TY - JOUR
T1 - Artificial topological superconductor by the proximity effect
AU - Xu, Jin Peng
AU - Liu, Canhua
AU - Wang, Mei Xiao
AU - Ge, Jianfeng
AU - Liu, Zhi Long
AU - Yang, Xiaojun
AU - Chen, Yan
AU - Liu, Ying
AU - Xu, Zhu An
AU - Gao, Chun Lei
AU - Qian, Dong
AU - Zhang, Fu Chun
AU - Jia, Jin Feng
PY - 2014/5/30
Y1 - 2014/5/30
N2 - Topological superconductors (TSCs), featuring fully gapped bulk and gapless surface states as well as Majorana fermions, have potential applications in fault-tolerant topological quantum computing. Because TSCs are very rare in nature, an alternative way to study the TSC is to artificially introduce superconductivity into the surface states of a topological insulator through the proximity effect [X.L. Qi, T.L. Hughse, S. Raghu, and S.C. Zhang, Phys. Rev. Lett. 102, 187001 (2009); L. Fu and C.L. Kane, Phys. Rev. Lett. 100, 096407 (2008); J. Alicea, Rep. Prog. Phys. 75, 076501 (2012); C.W.J. Beenakker, Annu. Rev. Condens. Matter Phys. 4, 113 (2013)]. Here we report the experimental realization of the proximity effect-induced TSC in Bi2Te3 thin films grown on a NbSe2 substrate, as demonstrated by the density of states probed using scanning tunneling spectroscopy. We observed Abrikosov vortices and Andreev lower energy bound states on the surface of the topological insulator, with the superconducting coherence length depending on the film thickness and the magnetic field. These results also indicate that the topological surface states of Bi2Te3 thin films are superconducting and, thus, that the Bi2Te3/NbSe2 is an artificial TSC. The feasibility of fabricating a TSC with an individual Majorana fermion bound to a superconducting vortex for topological quantum computing is discussed.
AB - Topological superconductors (TSCs), featuring fully gapped bulk and gapless surface states as well as Majorana fermions, have potential applications in fault-tolerant topological quantum computing. Because TSCs are very rare in nature, an alternative way to study the TSC is to artificially introduce superconductivity into the surface states of a topological insulator through the proximity effect [X.L. Qi, T.L. Hughse, S. Raghu, and S.C. Zhang, Phys. Rev. Lett. 102, 187001 (2009); L. Fu and C.L. Kane, Phys. Rev. Lett. 100, 096407 (2008); J. Alicea, Rep. Prog. Phys. 75, 076501 (2012); C.W.J. Beenakker, Annu. Rev. Condens. Matter Phys. 4, 113 (2013)]. Here we report the experimental realization of the proximity effect-induced TSC in Bi2Te3 thin films grown on a NbSe2 substrate, as demonstrated by the density of states probed using scanning tunneling spectroscopy. We observed Abrikosov vortices and Andreev lower energy bound states on the surface of the topological insulator, with the superconducting coherence length depending on the film thickness and the magnetic field. These results also indicate that the topological surface states of Bi2Te3 thin films are superconducting and, thus, that the Bi2Te3/NbSe2 is an artificial TSC. The feasibility of fabricating a TSC with an individual Majorana fermion bound to a superconducting vortex for topological quantum computing is discussed.
UR - http://www.scopus.com/inward/record.url?scp=84901954198&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=84901954198&partnerID=8YFLogxK
U2 - 10.1103/PhysRevLett.112.217001
DO - 10.1103/PhysRevLett.112.217001
M3 - Article
AN - SCOPUS:84901954198
SN - 0031-9007
VL - 112
JO - Physical review letters
JF - Physical review letters
IS - 21
M1 - 217001
ER -