TY - JOUR
T1 - Assessing the 2023 Canadian wildfire smoke impact in Northeastern US
T2 - Air quality, exposure and environmental justice
AU - Yu, Manzhu
AU - Zhang, Shiyan
AU - Ning, Huan
AU - Li, Zhenlong
AU - Zhang, Kai
N1 - Publisher Copyright:
© 2024 Elsevier B.V.
PY - 2024/5/20
Y1 - 2024/5/20
N2 - The Canadian wildfires in June 2023 significantly impacted the northeastern United States, particularly in terms of worsened air pollution and environmental justice concerns. While advancements have been made in low-cost sensor deployments and satellite observations of atmospheric composition, integrating dynamic human mobility with wildfire PM2.5 exposure to fully understand the environmental justice implications remains underinvestigated. This study aims to enhance the accuracy of estimating ground-level fine particulate matter (PM2.5) concentrations by fusing chemical transport model outputs with empirical observations, estimating exposures using human mobility data, and evaluating the impact of environmental justice. Employing a novel data fusion technique, the study combines the Weather Research and Forecasting model with Chemistry (WRF-Chem) outputs and surface PM2.5 measurements, providing a more accurate estimation of PM2.5 distribution. The study addresses the gap in traditional exposure assessments by incorporating human mobility data and further investigates the spatial correlation of PM2.5 levels with various environmental and demographic factors from the US Environmental Protection Agency (EPA) Environmental Justice Screening and Mapping Tool (EJScreen). Results reveal that despite reduced mobility during high PM2.5 levels from wildfire smoke, exposure for both residents and individuals on the move remains high. Regions already burdened with high environmental pollution levels face amplified PM2.5 effects from wildfire smoke. Furthermore, we observed mixed correlations between PM2.5 concentrations and various demographic and socioeconomic factors, indicating complex exposure patterns across communities. Urban areas, in particular, experience persistent high exposure, while significant correlations in rural areas with EJScreen factors highlight the unique vulnerabilities of these populations to smoke exposure. These results advocate for a comprehensive approach to environmental health that leverages advanced models, integrates human mobility data, and addresses socio-demographic disparities, contributing to the development of equitable strategies against the growing threat of wildfires.
AB - The Canadian wildfires in June 2023 significantly impacted the northeastern United States, particularly in terms of worsened air pollution and environmental justice concerns. While advancements have been made in low-cost sensor deployments and satellite observations of atmospheric composition, integrating dynamic human mobility with wildfire PM2.5 exposure to fully understand the environmental justice implications remains underinvestigated. This study aims to enhance the accuracy of estimating ground-level fine particulate matter (PM2.5) concentrations by fusing chemical transport model outputs with empirical observations, estimating exposures using human mobility data, and evaluating the impact of environmental justice. Employing a novel data fusion technique, the study combines the Weather Research and Forecasting model with Chemistry (WRF-Chem) outputs and surface PM2.5 measurements, providing a more accurate estimation of PM2.5 distribution. The study addresses the gap in traditional exposure assessments by incorporating human mobility data and further investigates the spatial correlation of PM2.5 levels with various environmental and demographic factors from the US Environmental Protection Agency (EPA) Environmental Justice Screening and Mapping Tool (EJScreen). Results reveal that despite reduced mobility during high PM2.5 levels from wildfire smoke, exposure for both residents and individuals on the move remains high. Regions already burdened with high environmental pollution levels face amplified PM2.5 effects from wildfire smoke. Furthermore, we observed mixed correlations between PM2.5 concentrations and various demographic and socioeconomic factors, indicating complex exposure patterns across communities. Urban areas, in particular, experience persistent high exposure, while significant correlations in rural areas with EJScreen factors highlight the unique vulnerabilities of these populations to smoke exposure. These results advocate for a comprehensive approach to environmental health that leverages advanced models, integrates human mobility data, and addresses socio-demographic disparities, contributing to the development of equitable strategies against the growing threat of wildfires.
UR - http://www.scopus.com/inward/record.url?scp=85189041151&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85189041151&partnerID=8YFLogxK
U2 - 10.1016/j.scitotenv.2024.171853
DO - 10.1016/j.scitotenv.2024.171853
M3 - Article
C2 - 38522543
AN - SCOPUS:85189041151
SN - 0048-9697
VL - 926
JO - Science of the Total Environment
JF - Science of the Total Environment
M1 - 171853
ER -