TY - JOUR
T1 - Assessment of gait sensitivity norm as a predictor of risk of falling during walking in a neuromusculoskeletal model
AU - Thangal, Sayed Naseel Mohamed
AU - Talaty, Mukul
AU - Balasubramanian, Sriram
PY - 2013/10
Y1 - 2013/10
N2 - Quantifying the risk of falling (falls risk) would be helpful in treating people with gait disorders. The gait sensitivity norm (GSN) is a stability measure that correlates well to risk of falling in passive dynamic walkers but has not been evaluated on humans or human-like walking models. We assessed the correlation of GSN to risk of falling in a neuromusculoskeletal (NMS) walking model. Specifically, we evaluated the correlation of GSN to the actual disturbance rejection (ADR) of the model and the sensitivity of this relationship to gait parameter, Poincaré section selection and steady state variability correction. Statistically significant results at p<. 0.05 were obtained for some of the gait indicators evaluated at the point in the gait cycle where they were most variable. The correlation between GSN and ADR was sensitive to gait indicator and Poincaré sections evaluated but not to steady state variability correction. The current work suggests some simple steps to reduce the sensitivity of GSN to arbitrary and subjective factors. Overall, the findings support the potential of GSN to be a clinically applicable measure of falls risk. Further study is required to identify methods to more definitively select the various factors within the GSN calculation and to confirm its ability to predict falls risk in human subjects.
AB - Quantifying the risk of falling (falls risk) would be helpful in treating people with gait disorders. The gait sensitivity norm (GSN) is a stability measure that correlates well to risk of falling in passive dynamic walkers but has not been evaluated on humans or human-like walking models. We assessed the correlation of GSN to risk of falling in a neuromusculoskeletal (NMS) walking model. Specifically, we evaluated the correlation of GSN to the actual disturbance rejection (ADR) of the model and the sensitivity of this relationship to gait parameter, Poincaré section selection and steady state variability correction. Statistically significant results at p<. 0.05 were obtained for some of the gait indicators evaluated at the point in the gait cycle where they were most variable. The correlation between GSN and ADR was sensitive to gait indicator and Poincaré sections evaluated but not to steady state variability correction. The current work suggests some simple steps to reduce the sensitivity of GSN to arbitrary and subjective factors. Overall, the findings support the potential of GSN to be a clinically applicable measure of falls risk. Further study is required to identify methods to more definitively select the various factors within the GSN calculation and to confirm its ability to predict falls risk in human subjects.
UR - http://www.scopus.com/inward/record.url?scp=84883178372&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=84883178372&partnerID=8YFLogxK
U2 - 10.1016/j.medengphy.2013.03.018
DO - 10.1016/j.medengphy.2013.03.018
M3 - Article
C2 - 23669370
AN - SCOPUS:84883178372
SN - 1350-4533
VL - 35
SP - 1483
EP - 1489
JO - Medical Engineering and Physics
JF - Medical Engineering and Physics
IS - 10
ER -