TY - GEN
T1 - Asymmetric flexure hinge for compliant vibrational tissue cutting
AU - Jones, Justin A.
AU - Lee, Yuan Shin
AU - Moore, Jason Z.
N1 - Publisher Copyright:
Copyright © 2017 ASME.
PY - 2017
Y1 - 2017
N2 - This work investigates the compliance of a novel flexure hinge mechanism for tissue cutting. This hinge is to be used with ultrasonic axial vibration to induce transverse displacement. This transverse motion can aid in reducing tissue cutting force as well as possible target deflection by reducing the parallel tissue cutting force. The finite element method, FEM, is used to evaluate several flexural hinge designs to develop empirical equations for the compliance in the axial, transverse, and rotational directions. To generate appreciable transverse motion from an axially applied ultrasonic vibration an asymmetric flexural hinge is needed. In order to design an asymmetric complaint mechanism to fully take advantage of the transverse cutting motion the compliance with respect to geometry was explored. The ratio of thickness, length, and distance between the hinges were iterated while end loads were applied to derive the compliance equations. The empirical models are presented for each design study. It is shown that the rotational stiffness is the dominating factor of the stiffness matrix. It is also shown that the relationship between the rotational stiffness and the distance between hinges forms a piecewise equation. This is due to notch elements spaced close to each other can be modeled as a lumped element while notch elements spaced further apart need to be independently modeled.
AB - This work investigates the compliance of a novel flexure hinge mechanism for tissue cutting. This hinge is to be used with ultrasonic axial vibration to induce transverse displacement. This transverse motion can aid in reducing tissue cutting force as well as possible target deflection by reducing the parallel tissue cutting force. The finite element method, FEM, is used to evaluate several flexural hinge designs to develop empirical equations for the compliance in the axial, transverse, and rotational directions. To generate appreciable transverse motion from an axially applied ultrasonic vibration an asymmetric flexural hinge is needed. In order to design an asymmetric complaint mechanism to fully take advantage of the transverse cutting motion the compliance with respect to geometry was explored. The ratio of thickness, length, and distance between the hinges were iterated while end loads were applied to derive the compliance equations. The empirical models are presented for each design study. It is shown that the rotational stiffness is the dominating factor of the stiffness matrix. It is also shown that the relationship between the rotational stiffness and the distance between hinges forms a piecewise equation. This is due to notch elements spaced close to each other can be modeled as a lumped element while notch elements spaced further apart need to be independently modeled.
UR - http://www.scopus.com/inward/record.url?scp=85027887485&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85027887485&partnerID=8YFLogxK
U2 - 10.1115/MSEC20172850
DO - 10.1115/MSEC20172850
M3 - Conference contribution
AN - SCOPUS:85027887485
T3 - ASME 2017 12th International Manufacturing Science and Engineering Conference, MSEC 2017 collocated with the JSME/ASME 2017 6th International Conference on Materials and Processing
BT - Bio and Sustainable Manufacturing
PB - American Society of Mechanical Engineers
T2 - ASME 2017 12th International Manufacturing Science and Engineering Conference, MSEC 2017 collocated with the JSME/ASME 2017 6th International Conference on Materials and Processing
Y2 - 4 June 2017 through 8 June 2017
ER -