Asymptotic performance of vector quantizers with a perceptual distortion measure

Jia Li, Navin Chaddha, Robert M. Gray

Research output: Contribution to journalArticlepeer-review

58 Scopus citations

Abstract

Gersho's bounds on the asymptotic performance of vector quantizers are valid for vector distortions which are powers of the Euclidean norm. Yamada, Tazaki, and Gray generalized the results to distortion measures that are increasing functions of the norm of their argument. In both cases, the distortion is uniquely determined by the vector quantization error, i.e., the Euclidean difference between the original vector and the codeword into which it is quantized. We generalize these asymptotic bounds to input-weighted quadratic distortion measures and measures that are approximately output-weighted-quadratic when the distortion is small, a class of distortion measures often claimed to be perceptually meaningful. An approximation of the asymptotic distortion based on Gersho's conjecture is derived as well. We also consider the problem of source mismatch, where the quantizer is designed using a probability density different from the true source density. The resulting asymptotic performance in terms of distortion increase in decibels is shown to be linear in the relative entropy between the true and estimated probability densities.

Original languageEnglish (US)
Pages (from-to)1082-1091
Number of pages10
JournalIEEE Transactions on Information Theory
Volume45
Issue number4
DOIs
StatePublished - 1999

All Science Journal Classification (ASJC) codes

  • Information Systems
  • Computer Science Applications
  • Library and Information Sciences

Fingerprint

Dive into the research topics of 'Asymptotic performance of vector quantizers with a perceptual distortion measure'. Together they form a unique fingerprint.

Cite this