Atmospheric Reactivity of Fullerene (C60) Aerosols

Dhruv Mitroo, Jiewei Wu, Peter F. Colletti, Seung Soo Lee, Michael J. Walker, William H. Brune, Brent J. Williams, John D. Fortner

Research output: Contribution to journalArticlepeer-review

4 Scopus citations


Rapid growth and adoption of nanomaterial-based technologies underpin a risk for unaccounted material release to the environment. Carbon-based materials, in particular fullerenes, have been widely proposed for a variety of applications. A quantitative understanding of how they behave is critical for accurate environmental impact assessment. While their aqueous phase reactivity, fate, and transport have been studied for over a decade, aerosol phase reactivity remains unexplored. Here, the transformation of C60, as nanocrystal (nC60) aerosols, is evaluated over a range of simulated atmospheric conditions. Upon exposure to UV light, gas-phase O3, and OH, nC60 is readily oxidized. This reaction pathway is likely limited by diffusion of oxidants within/through the nC60 aerosol. Further, gas-phase oxidation induces disorder in the crystal structure without affecting aerosol (aggregate) size. Loss of crystallinity suggests aged nC60 aerosols will be less effective ice nuclei, but an increase in surface oxidation will improve their cloud condensation nuclei ability.

Original languageEnglish (US)
Pages (from-to)95-102
Number of pages8
JournalACS Earth and Space Chemistry
Issue number2
StatePublished - Feb 15 2018

All Science Journal Classification (ASJC) codes

  • Geochemistry and Petrology
  • Atmospheric Science
  • Space and Planetary Science


Dive into the research topics of 'Atmospheric Reactivity of Fullerene (C60) Aerosols'. Together they form a unique fingerprint.

Cite this