Atomistic simulation of coal char isothermal oxy-fuel combustion: Char reactivity and behavior

Haihui Xin, Chang'an Wang, Enette Louw, Deming Wang, Jonathan P. Mathews

Research output: Contribution to journalArticlepeer-review

30 Scopus citations

Abstract

Here a new automated and inexpensive atomic simulation approach including sequential oxygen diffusion and simplified reaction was created to explore the char reactivity and combustion behavior during oxy-fuel combustion. Two large-scale (>40,000 carbon atoms) coal chars (higher- and lower-porosity chars) that differ primarily in pore volume and pore size distribution were evaluated against graphite with similar number of carbon atoms. The structural transformations, total atoms, reactive atoms, their location, conversion, rate (number of atoms reacting), size of the char, and apparent density were captured. Post analysis evaluated the total porosity, micro/mesoporosity volume, and atomic surface area. The higher porosity char burn-off was ∼38% more rapid than the graphite (number of steps), similar to the lower porosity char (∼33% faster). The peak reactivity followed the maximum atomic surface area (with a delay of 5–10% conversion) than decreased—as there were fewer reactive carbons. Porosity volume increases with conversion until 50–70% where the porosity declines. For both chars the microporosity contribution increased until 30–35% conversion then the pores either grow or coalesce into the mesoporous classification. The chars burning modes are initially changing density (pore growth accompany mass loss) until ∼50% conversion when the mode became a combination of changing density and shrinking core. Graphite was less reactive and followed a shrinking core consistent with the simulation restrictions. This approach is likely to aid in the exploration of the influence of char structure and conversion conditions upon reactivity and char behavior in combustion and gasification.

Original languageEnglish (US)
Pages (from-to)935-943
Number of pages9
JournalFuel
Volume182
DOIs
StatePublished - Oct 15 2016

All Science Journal Classification (ASJC) codes

  • General Chemical Engineering
  • Fuel Technology
  • Energy Engineering and Power Technology
  • Organic Chemistry

Fingerprint

Dive into the research topics of 'Atomistic simulation of coal char isothermal oxy-fuel combustion: Char reactivity and behavior'. Together they form a unique fingerprint.

Cite this