TY - JOUR
T1 - Audible enclaves crafted by nonlinear self-bending ultrasonic beams
AU - Zhong, Jia Xin
AU - Ji, Jun
AU - Xia, Xiaoxing
AU - Heo, Hyeonu
AU - Jing, Yun
N1 - Publisher Copyright:
Copyright © 2025 the Author(s).
PY - 2025/3/25
Y1 - 2025/3/25
N2 - Delivering audible content to a targeted listener without disturbing others is paramount in audio engineering. However, achieving this goal has long been challenging due to the diffraction of low-frequency (long-wavelength) audio waves in linear acoustics. Here, we introduce an approach for creating remote audio spots, dubbed audible enclaves, by harnessing the local nonlinear interaction of two self-bending ultrasonic beams with distinct spectra. The self-bending ultrasonic beams created by acoustic metasurfaces, though inaudible, can bypass obstacles such as human heads. At their intersection behind obstacles, highly localized audible enclaves are formed due to the local nonlinear interactions. Additionally, we demonstrate the ultrabroadband capabilities of our metasurface-based implementation both numerically and experimentally, spanning from 125 Hz to 4 kHz (6 octave bands), covering the majority of the audible frequency range. The practicality of our proposed technique is underscored by its compact implementation size (0.16 m, equivalent to 0.06 wavelengths at 125 Hz), as well as its robust performance under wideband transient audio signal excitation and in a common room with reverberations. Our proposed audible enclaves hold significant potential for various applications in advanced audio engineering, including private speech communications, immersive spatial audio reproduction, and high-resolution sound/quiet zone control.
AB - Delivering audible content to a targeted listener without disturbing others is paramount in audio engineering. However, achieving this goal has long been challenging due to the diffraction of low-frequency (long-wavelength) audio waves in linear acoustics. Here, we introduce an approach for creating remote audio spots, dubbed audible enclaves, by harnessing the local nonlinear interaction of two self-bending ultrasonic beams with distinct spectra. The self-bending ultrasonic beams created by acoustic metasurfaces, though inaudible, can bypass obstacles such as human heads. At their intersection behind obstacles, highly localized audible enclaves are formed due to the local nonlinear interactions. Additionally, we demonstrate the ultrabroadband capabilities of our metasurface-based implementation both numerically and experimentally, spanning from 125 Hz to 4 kHz (6 octave bands), covering the majority of the audible frequency range. The practicality of our proposed technique is underscored by its compact implementation size (0.16 m, equivalent to 0.06 wavelengths at 125 Hz), as well as its robust performance under wideband transient audio signal excitation and in a common room with reverberations. Our proposed audible enclaves hold significant potential for various applications in advanced audio engineering, including private speech communications, immersive spatial audio reproduction, and high-resolution sound/quiet zone control.
UR - https://www.scopus.com/pages/publications/105000652360
UR - https://www.scopus.com/inward/citedby.url?scp=105000652360&partnerID=8YFLogxK
U2 - 10.1073/pnas.2408975122
DO - 10.1073/pnas.2408975122
M3 - Article
C2 - 40096604
AN - SCOPUS:105000652360
SN - 0027-8424
VL - 122
JO - Proceedings of the National Academy of Sciences of the United States of America
JF - Proceedings of the National Academy of Sciences of the United States of America
IS - 12
M1 - e2408975122
ER -