TY - GEN
T1 - Author Homepage Discovery in CiteSeerX
AU - Patel, Krutarth
AU - Caragea, Cornelia
AU - Caragea, Doina
AU - Giles, C. Lee
N1 - Publisher Copyright:
Copyright © 2021, Association for the Advancement of Artificial Intelligence (www.aaai.org). All rights reserved
PY - 2021
Y1 - 2021
N2 - Scholarly digital libraries provide access to scientific publications and comprise useful resources for researchers. CiteSeerX is one such digital library search engine that provides access to more than 10 million academic documents. We propose a novel search-driven approach to build and maintain a large collection of homepages that can be used as seed URLs in any digital library including CiteSeerX to crawl scientific documents. Precisely, we integrate Web search and classification in a unified approach to discover new homepages: first, we use publicly-available author names and research paper titles as queries to a Web search engine to find relevant content, and then we identify the correct homepages from the search results using a powerful deep learning classifier based on Convolutional Neural Networks. Moreover, we use Self-Training in order to reduce the labeling effort and to utilize the unlabeled data to train the efficient researcher homepage classifier. Our experiments on a large scale dataset highlight the effectiveness of our approach, and position Web search as an effective method for acquiring authors' homepages. We show the development and deployment of the proposed approach in CiteSeerX and the maintenance requirements.
AB - Scholarly digital libraries provide access to scientific publications and comprise useful resources for researchers. CiteSeerX is one such digital library search engine that provides access to more than 10 million academic documents. We propose a novel search-driven approach to build and maintain a large collection of homepages that can be used as seed URLs in any digital library including CiteSeerX to crawl scientific documents. Precisely, we integrate Web search and classification in a unified approach to discover new homepages: first, we use publicly-available author names and research paper titles as queries to a Web search engine to find relevant content, and then we identify the correct homepages from the search results using a powerful deep learning classifier based on Convolutional Neural Networks. Moreover, we use Self-Training in order to reduce the labeling effort and to utilize the unlabeled data to train the efficient researcher homepage classifier. Our experiments on a large scale dataset highlight the effectiveness of our approach, and position Web search as an effective method for acquiring authors' homepages. We show the development and deployment of the proposed approach in CiteSeerX and the maintenance requirements.
UR - http://www.scopus.com/inward/record.url?scp=85130094110&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85130094110&partnerID=8YFLogxK
U2 - 10.1609/aaai.v35i17.17778
DO - 10.1609/aaai.v35i17.17778
M3 - Conference contribution
AN - SCOPUS:85130094110
T3 - 35th AAAI Conference on Artificial Intelligence, AAAI 2021
SP - 15146
EP - 15155
BT - 35th AAAI Conference on Artificial Intelligence, AAAI 2021
PB - Association for the Advancement of Artificial Intelligence
T2 - 35th AAAI Conference on Artificial Intelligence, AAAI 2021
Y2 - 2 February 2021 through 9 February 2021
ER -