Authorship attribution for neural text generation

Adaku Uchendu, Thai Le, Kai Shu, Dongwon Lee

Research output: Chapter in Book/Report/Conference proceedingConference contribution

130 Scopus citations

Abstract

In recent years, the task of generating realistic short and long texts have made tremendous advancements. In particular, several recently proposed neural network-based language models have demonstrated their astonishing capabilities to generate texts that are challenging to distinguish from human-written texts with the naked eye. Despite many benefits and utilities of such neural methods, in some applications, being able to tell the “author” of a text in question becomes critically important. In this work, in the context of this Turing Test, we investigate the so-called authorship attribution problem in three versions: (1) given two texts T1 and T2, are both generated by the same method or not? (2) is the given text T written by a human or machine? (3) given a text T and k candidate neural methods, can we single out the method (among k alternatives) that generated T? Against one human-written and eight machine-generated texts (i.e., CTRL, GPT, GPT2, GROVER, XLM, XLNET, PPLM, FAIR), we empirically experiment with the performance of various models in three problems. By and large, we find that most generators still generate texts significantly different from human-written ones, thereby making three problems easier to solve. However, the qualities of texts generated by GPT2, GROVER, and FAIR are better, often confusing machine classifiers in solving three problems. All codes and datasets of our experiments are available at: https://bit.ly/302zWdz.

Original languageEnglish (US)
Title of host publicationEMNLP 2020 - 2020 Conference on Empirical Methods in Natural Language Processing, Proceedings of the Conference
PublisherAssociation for Computational Linguistics (ACL)
Pages8384-8395
Number of pages12
ISBN (Electronic)9781952148606
StatePublished - 2020
Event2020 Conference on Empirical Methods in Natural Language Processing, EMNLP 2020 - Virtual, Online
Duration: Nov 16 2020Nov 20 2020

Publication series

NameEMNLP 2020 - 2020 Conference on Empirical Methods in Natural Language Processing, Proceedings of the Conference

Conference

Conference2020 Conference on Empirical Methods in Natural Language Processing, EMNLP 2020
CityVirtual, Online
Period11/16/2011/20/20

All Science Journal Classification (ASJC) codes

  • Information Systems
  • Computer Science Applications
  • Computational Theory and Mathematics

Fingerprint

Dive into the research topics of 'Authorship attribution for neural text generation'. Together they form a unique fingerprint.

Cite this