Automated Fractured Femur Segmentation using CNN

Jared Vicory, Pranjal Sahu, Hwabok Wee, Hannah Nam, Avani Chopra, J. Spence Reid, Gregory S. Lewis, Venkata S. Arikatla

Research output: Chapter in Book/Report/Conference proceedingConference contribution

1 Scopus citations

Abstract

Fracture fixation surgeries require a careful and well thought out surgical plan, mainly due to the wide range of possibilities in the fracture types and available choices in fixation constructs. There is considerable interest in virtual 3D planning tools ranging from 3D visualization, interactive fracture reduction and bio-mechanical analysis of fracture fixation construct stability to arrive at optimal plan. One of the key steps prior to reconstructing 3D fractures is accurate fracture segmentation which can be tedious and time consuming even with semi-automated tools. In this paper, we report preliminary results from our attempt to fully automate the segmentation of fractured bone using deep learning. We performed experiments using the widely used 3D segmentation model called 3D U-Net on a dataset of 14 CT volumes. The dataset is randomly divided into train, validation and test splits comprising 7, 3 and 4 volumes respectively. Even with a small training set of femur fractures, we were able to achieve a mean dice score of 0.861 with a mean sensitivity of 0.899. The model was able to capture the challenging fracture regions and could cleanly separate the femur head and socket. Apart from this, we also studied the impact of different loss functions on the network’s performance. The results indicate that deep learning based segmentation methodologies have good potential in automating the challenging task of fractured femur segmentation. Further improvement is expected with a larger collection of such fractured samples.

Original languageEnglish (US)
Title of host publicationMedical Imaging 2022
Subtitle of host publicationImage Processing
EditorsOlivier Colliot, Ivana Isgum, Bennett A. Landman, Murray H. Loew
PublisherSPIE
ISBN (Electronic)9781510649392
DOIs
StatePublished - 2022
EventMedical Imaging 2022: Image Processing - Virtual, Online
Duration: Mar 21 2021Mar 27 2021

Publication series

NameProgress in Biomedical Optics and Imaging - Proceedings of SPIE
Volume12032
ISSN (Print)1605-7422

Conference

ConferenceMedical Imaging 2022: Image Processing
CityVirtual, Online
Period3/21/213/27/21

All Science Journal Classification (ASJC) codes

  • Electronic, Optical and Magnetic Materials
  • Atomic and Molecular Physics, and Optics
  • Biomaterials
  • Radiology Nuclear Medicine and imaging

Fingerprint

Dive into the research topics of 'Automated Fractured Femur Segmentation using CNN'. Together they form a unique fingerprint.

Cite this