TY - GEN
T1 - Automated heuristic induction from human design data
AU - Puentes, Lucas
AU - Cagan, Jonathan
AU - McComb, Christopher
N1 - Publisher Copyright:
Copyright © 2020 ASME
PY - 2020
Y1 - 2020
N2 - Through experience, designers develop guiding principles, or heuristics, to aid decision-making in familiar design domains. Generalized versions of common design heuristics have been identified across multiple domains and applied by novices to design problems. Previous work leveraged a sample of these common heuristics to assist in an agent-based design process, which typically lacks heuristics. These predefined heuristics were translated into sequences of specifically applied design changes that followed the theme of the heuristic. To overcome the upfront burden, need for human interpretation, and lack of generality of this manual process, this paper presents a methodology that induces frequent heuristic sequences from an existing timeseries design change dataset. Individual induced sequences are then algorithmically grouped based on similarity to form groups that each represent a shared general heuristic. The heuristic induction methodology is applied to data from two human design studies in different design domains. The first dataset, collected from a truss design task, finds a highly similar set of general heuristics used by human designers to that which was hand selected for the previous computational agent study. The second dataset, collected from a cooling system design problem, demonstrates further applicability and generality of the heuristic induction process. Through this heuristic induction technique, designers working in a specified domain can learn from others’ prior problem-solving strategies and use these strategies in their own future design problems.
AB - Through experience, designers develop guiding principles, or heuristics, to aid decision-making in familiar design domains. Generalized versions of common design heuristics have been identified across multiple domains and applied by novices to design problems. Previous work leveraged a sample of these common heuristics to assist in an agent-based design process, which typically lacks heuristics. These predefined heuristics were translated into sequences of specifically applied design changes that followed the theme of the heuristic. To overcome the upfront burden, need for human interpretation, and lack of generality of this manual process, this paper presents a methodology that induces frequent heuristic sequences from an existing timeseries design change dataset. Individual induced sequences are then algorithmically grouped based on similarity to form groups that each represent a shared general heuristic. The heuristic induction methodology is applied to data from two human design studies in different design domains. The first dataset, collected from a truss design task, finds a highly similar set of general heuristics used by human designers to that which was hand selected for the previous computational agent study. The second dataset, collected from a cooling system design problem, demonstrates further applicability and generality of the heuristic induction process. Through this heuristic induction technique, designers working in a specified domain can learn from others’ prior problem-solving strategies and use these strategies in their own future design problems.
UR - http://www.scopus.com/inward/record.url?scp=85096110681&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85096110681&partnerID=8YFLogxK
U2 - 10.1115/DETC2020-22151
DO - 10.1115/DETC2020-22151
M3 - Conference contribution
AN - SCOPUS:85096110681
T3 - Proceedings of the ASME Design Engineering Technical Conference
BT - 40th Computers and Information in Engineering Conference (CIE)
PB - American Society of Mechanical Engineers (ASME)
T2 - ASME 2020 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, IDETC-CIE 2020
Y2 - 17 August 2020 through 19 August 2020
ER -