Abstract
A computer-assisted instrument was constructed to measure the fundamental physical properties that regulate water transport at the cell level in plants. With this automated pressure probe, we measure a cell's hydrostatic pressure by inserting an oil-filled glass capillary into the cell. The capillary is connected to a pressure sensor and to a plunger controlled by a stepper motor. At the capillary tip an interface forms between the cell sap and oil. The image of this interface is directed through a microscope to a video camera. The interface position is detected by a video processor sampling at 60 Hz and is regulated by a microcomputer which advances or retracts the plunger at rates up to 280 steps per second. To determine the hydraulic conductance of cell membranes, the computer carries out pressure-relaxation and pressure-clamp experiments. Pressure is recorded with a resolution of 0.02 bar and is regulated in pressure-clamp experiments at ±0.02 bar. The instrument measures the cell volumetric elastic modulus by injecting or removing small volumes from the cell while simultaneously measuring cell turgor pressure. This system was tested on the cells of pea seedlings and proved superior to the previous techniques, especially for pressure-clamp experiments and volumetric elastic modulus determinations.
Original language | English (US) |
---|---|
Pages (from-to) | 2614-2619 |
Number of pages | 6 |
Journal | Review of Scientific Instruments |
Volume | 57 |
Issue number | 10 |
DOIs | |
State | Published - Dec 1 1986 |
All Science Journal Classification (ASJC) codes
- Instrumentation
- Physics and Astronomy (miscellaneous)