TY - GEN
T1 - Automatic detection and segmentation of ground glass opacity nodules
AU - Zhou, Jinghao
AU - Chang, Sukmoon
AU - Metaxas, Dimitris N.
AU - Zhao, Binsheng
AU - Schwartz, Lawrence H.
AU - Ginsberg, Michelle S.
N1 - Copyright:
Copyright 2020 Elsevier B.V., All rights reserved.
PY - 2006
Y1 - 2006
N2 - Ground Glass Opacity (GGO) is defined as hazy increased attenuation within a lung that is not associated with obscured underlying vessels. Since pure (nonsolid) or mixed (partially solid) GGO at the thin-section CT are more likely to be malignant than those with solid opacity, early detection and treatment of GGO can improve a prognosis of lung cancer. However, due to indistinct boundaries and inter- or intra-observer variation, consistent manual detection and segmentation of GGO have proved to be problematic. In this paper, we propose a novel method for automatic detection and segmentation of GGO from chest CT images. For GGO detection, we develop a classifier by boosting k-NN whose distance measure is the Euclidean distance between the nonparametric density estimates of two examples. The detected GGO region is then automatically segmented by analyzing the texture likelihood map of the region. We applied our method to clinical chest CT volumes containing 10 GGO nodules. The proposed method detected all of the 10 nodules with only one false positive nodule. We also present the statistical validation of the proposed classifier for GGO detection as well as very promising results for automatic GGO segmentation. The proposed method provides a new powerful tool for automatic detection as well as accurate and reproducible segmentation of GGO.
AB - Ground Glass Opacity (GGO) is defined as hazy increased attenuation within a lung that is not associated with obscured underlying vessels. Since pure (nonsolid) or mixed (partially solid) GGO at the thin-section CT are more likely to be malignant than those with solid opacity, early detection and treatment of GGO can improve a prognosis of lung cancer. However, due to indistinct boundaries and inter- or intra-observer variation, consistent manual detection and segmentation of GGO have proved to be problematic. In this paper, we propose a novel method for automatic detection and segmentation of GGO from chest CT images. For GGO detection, we develop a classifier by boosting k-NN whose distance measure is the Euclidean distance between the nonparametric density estimates of two examples. The detected GGO region is then automatically segmented by analyzing the texture likelihood map of the region. We applied our method to clinical chest CT volumes containing 10 GGO nodules. The proposed method detected all of the 10 nodules with only one false positive nodule. We also present the statistical validation of the proposed classifier for GGO detection as well as very promising results for automatic GGO segmentation. The proposed method provides a new powerful tool for automatic detection as well as accurate and reproducible segmentation of GGO.
UR - http://www.scopus.com/inward/record.url?scp=79551688774&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=79551688774&partnerID=8YFLogxK
U2 - 10.1007/11866565_96
DO - 10.1007/11866565_96
M3 - Conference contribution
C2 - 17354962
AN - SCOPUS:79551688774
SN - 3540447075
SN - 9783540447078
T3 - Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
SP - 784
EP - 791
BT - Medical Image Computing and Computer-Assisted Intervention, MICCAI 2006 - 9th International Conference, Proceedings
PB - Springer Verlag
T2 - 9th International Conference on Medical Image Computing and Computer-Assisted Intervention, MICCAI 2006
Y2 - 1 October 2006 through 6 October 2006
ER -