Automatic knowledge base construction from scholarly documents

Rabah A. Al-Zaidy, C. L.C. Giles

Research output: Chapter in Book/Report/Conference proceedingConference contribution

5 Scopus citations


The continuing growth of published scholarly content on the web ensures the availability of the most recent scient findings to researchers. Scholarly documents, such as research articles, are easily accessed by using academic search engines that are built on large repositories of scholarly documents. Scienti.c information extraction from documents into a structured knowledge graph representation facilitates automated machine understanding of a document's content. Traditional information extraction approaches, that either require training samples or a preexisting knowledge base to assist in the extraction, can be challenging when applied to large repositories of digital documents. Labeled training examples for such large scale are diicult to obtain for such datasets. Also, most available knowledge bases are built from web data and do not have suicient coverage to include concepts found in scienti.c articles. In this paper we aim to construct a knowledge graph from scholarly documents while addressing both these issues. We propose a fully automatic, unsupervised system for scienti.c information extraction that does not build on an existing knowledge base and avoids manually-tagged training data. We describe and evaluate a constructed taxonomy that contains over 15k entities resulting from applying our approach to 10k documents.

Original languageEnglish (US)
Title of host publicationDocEng 2017 - Proceedings of the 2017 ACM Symposium on Document Engineering
PublisherAssociation for Computing Machinery, Inc
Number of pages4
ISBN (Electronic)9781450346894
StatePublished - Aug 31 2017
Event17th ACM Symposium on Document Engineering, DocEng 2017 - Valletta, Malta
Duration: Sep 4 2017Sep 7 2017

Publication series

NameDocEng 2017 - Proceedings of the 2017 ACM Symposium on Document Engineering


Other17th ACM Symposium on Document Engineering, DocEng 2017

All Science Journal Classification (ASJC) codes

  • Software
  • Information Systems
  • Computer Science Applications


Dive into the research topics of 'Automatic knowledge base construction from scholarly documents'. Together they form a unique fingerprint.

Cite this