TY - JOUR
T1 - Autonomic and vascular responses to reduced limb perfusion
AU - Daley, Joseph C.
AU - Khan, Mazhar H.
AU - Hogeman, Cynthia S.
AU - Sinoway, Lawrence I.
PY - 2003/10/1
Y1 - 2003/10/1
N2 - The purpose of this study was to examine hemodynamic responses to graded muscle reflex engagement in human subjects. We studied seven healthy human volunteers [24 ± 2 (SE) yr old; 4 men, 3 women] performing rhythmic handgrip exercise [40% maximal voluntary contraction (MVC)] during ambient and positive pressure exercise (+10 to +50 mmHg in 10-mmHg increments every minute). Muscle sympathetic nerve activity (MSNA), mean arterial blood pressure (MAP), and mean blood velocity were recorded. Plasma lactate, hydrogen ion concentration, and oxyhemoglobin saturation were measured from venous blood. Ischemic exercise resulted in a greater rise in both MSNA and MAP vs. nonischemic exercise. These heightened autonomic responses were noted at +40 and +50 mmHg. Each level of positive pressure was associated with an immediate fall in flow velocity and forearm perfusion pressure. However, during each minute, perfusion pressure increased progressively. For positive pressure of +10 to +40 mmHg, this was associated with restoration of flow velocity. However, at +50 mmHg, flow was not restored. This inability to restore flow was seen at a time when the muscle reflex was clearly engaged (increased MSNA). We believe that these findings are consistent with the hypothesis that before the muscle reflex is clearly engaged, flow to muscle is enhanced by a process that raises perfusion pressure. Once the muscle reflex is clearly engaged and MSNA is augmented, flow to muscle is no longer restored by a similar rise in perfusion pressure, suggesting that active vasoconstriction within muscle is occurring at +50 mmHg.
AB - The purpose of this study was to examine hemodynamic responses to graded muscle reflex engagement in human subjects. We studied seven healthy human volunteers [24 ± 2 (SE) yr old; 4 men, 3 women] performing rhythmic handgrip exercise [40% maximal voluntary contraction (MVC)] during ambient and positive pressure exercise (+10 to +50 mmHg in 10-mmHg increments every minute). Muscle sympathetic nerve activity (MSNA), mean arterial blood pressure (MAP), and mean blood velocity were recorded. Plasma lactate, hydrogen ion concentration, and oxyhemoglobin saturation were measured from venous blood. Ischemic exercise resulted in a greater rise in both MSNA and MAP vs. nonischemic exercise. These heightened autonomic responses were noted at +40 and +50 mmHg. Each level of positive pressure was associated with an immediate fall in flow velocity and forearm perfusion pressure. However, during each minute, perfusion pressure increased progressively. For positive pressure of +10 to +40 mmHg, this was associated with restoration of flow velocity. However, at +50 mmHg, flow was not restored. This inability to restore flow was seen at a time when the muscle reflex was clearly engaged (increased MSNA). We believe that these findings are consistent with the hypothesis that before the muscle reflex is clearly engaged, flow to muscle is enhanced by a process that raises perfusion pressure. Once the muscle reflex is clearly engaged and MSNA is augmented, flow to muscle is no longer restored by a similar rise in perfusion pressure, suggesting that active vasoconstriction within muscle is occurring at +50 mmHg.
UR - http://www.scopus.com/inward/record.url?scp=0141678499&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=0141678499&partnerID=8YFLogxK
U2 - 10.1152/japplphysiol.00344.2002
DO - 10.1152/japplphysiol.00344.2002
M3 - Article
C2 - 12832425
AN - SCOPUS:0141678499
SN - 8750-7587
VL - 95
SP - 1493
EP - 1498
JO - Journal of applied physiology
JF - Journal of applied physiology
IS - 4
ER -