Autonomous airborne mid-infrared spectrometer for high-precision measurements of ethane during the NASA ACT-America studies

Petter Weibring, Dirk Richter, James G. Walega, Alan Fried, Joshua Digangi, Hannah Halliday, Yonghoon Choi, Bianca Baier, Colm Sweeney, Ben Miller, Kenneth J. Davis, Zachary Barkley, Michael D. Obland

Research output: Contribution to journalArticlepeer-review

3 Scopus citations


An airborne trace gas sensor based on mid-infrared technology is presented for fast (1s) and high-precision ethane measurements during the Atmospheric Carbon and Transport-America (ACT-America) study. The ACT-America campaign is a multiyear effort to better understand and quantify sources and sinks for the two major greenhouse gases carbon dioxide and methane. Simultaneous airborne ethane and methane measurements provide one method by which sources of methane can be identified and quantified. The instrument described herein was operated on NASA's B200 King Air airplane spanning five separate field deployments. As this platform has limited payload capabilities, considerable effort was devoted to minimizing instrument weight and size without sacrificing airborne ethane measurement performance. This paper describes the numerous features designed to achieve these goals. Two of the key instrument features that were realized were autonomous instrument control with no onboard operator and the implementation of direct absorption spectroscopy based on fundamental first principles. We present airborne measurement performance for ethane based upon the precisions of zero air background measurements and ambient precision during quiescent stable periods. The airborne performance was improved with each successive deployment phase, and we summarize the major upgraded design features to achieve these improvements. During the fourth deployment phase in the spring of 2018, the instrument achieved 1s (1 classCombining double low line"inline-formula">σi>)span> airborne ethane precisions reproducibly in the 30-40 parts per trillion by volume (pptv) range in both the boundary layer and the less turbulent free troposphere. This performance is among some of the best reported to date for fast (1Hz) airborne ethane measurements. In both the laboratory conditions and at times during calm and level airborne operation, these precisions were as low as 15-20pptv.p>.

Original languageEnglish (US)
Pages (from-to)6095-6112
Number of pages18
JournalAtmospheric Measurement Techniques
Issue number11
StatePublished - Nov 17 2020

All Science Journal Classification (ASJC) codes

  • Atmospheric Science


Dive into the research topics of 'Autonomous airborne mid-infrared spectrometer for high-precision measurements of ethane during the NASA ACT-America studies'. Together they form a unique fingerprint.

Cite this