TY - GEN
T1 - Backpropagation-Free Deep Learning with Recursive Local Representation Alignment
AU - Ororbia, Alexander G.
AU - Mali, Ankur
AU - Kifer, Daniel
AU - Lee Giles, C.
N1 - Publisher Copyright:
Copyright © 2023, Association for the Advancement of Artificial Intelligence (www.aaai.org). All rights reserved.
PY - 2023/6/27
Y1 - 2023/6/27
N2 - Training deep neural networks on large-scale datasets requires significant hardware resources whose costs (even on cloud platforms) put them out of reach of smaller organizations, groups, and individuals. Backpropagation (backprop), the workhorse for training these networks, is an inherently sequential process that is difficult to parallelize. Furthermore, researchers must continually develop various specialized techniques, such as particular weight initializations and enhanced activation functions, to ensure stable parameter optimization. Our goal is to seek an effective, neuro-biologically plausible alternative to backprop that can be used to train deep networks. In this paper, we propose a backprop-free procedure, recursive local representation alignment, for training large-scale architectures. Experiments with residual networks on CIFAR-10 and the large benchmark, ImageNet, show that our algorithm generalizes as well as backprop while converging sooner due to weight updates that are parallelizable and computationally less demanding. This is empirical evidence that a backprop-free algorithm can scale up to larger datasets.
AB - Training deep neural networks on large-scale datasets requires significant hardware resources whose costs (even on cloud platforms) put them out of reach of smaller organizations, groups, and individuals. Backpropagation (backprop), the workhorse for training these networks, is an inherently sequential process that is difficult to parallelize. Furthermore, researchers must continually develop various specialized techniques, such as particular weight initializations and enhanced activation functions, to ensure stable parameter optimization. Our goal is to seek an effective, neuro-biologically plausible alternative to backprop that can be used to train deep networks. In this paper, we propose a backprop-free procedure, recursive local representation alignment, for training large-scale architectures. Experiments with residual networks on CIFAR-10 and the large benchmark, ImageNet, show that our algorithm generalizes as well as backprop while converging sooner due to weight updates that are parallelizable and computationally less demanding. This is empirical evidence that a backprop-free algorithm can scale up to larger datasets.
UR - http://www.scopus.com/inward/record.url?scp=85168248259&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85168248259&partnerID=8YFLogxK
M3 - Conference contribution
AN - SCOPUS:85168248259
T3 - Proceedings of the 37th AAAI Conference on Artificial Intelligence, AAAI 2023
SP - 9327
EP - 9335
BT - AAAI-23 Technical Tracks 8
A2 - Williams, Brian
A2 - Chen, Yiling
A2 - Neville, Jennifer
PB - AAAI press
T2 - 37th AAAI Conference on Artificial Intelligence, AAAI 2023
Y2 - 7 February 2023 through 14 February 2023
ER -