TY - JOUR
T1 - Backscatter differential phase-estimation and variability
AU - Trömel, Silke
AU - Kumjian, Matthew R.
AU - Ryzhkov, Alexander V.
AU - Simmer, Clemens
AU - Diederich, Malte
PY - 2013/11
Y1 - 2013/11
N2 - On the basis of simulations and observations made with polarimetric radars operating at X, C, and S bands, the backscatter differential phase δ has been explored; δ has been identified as an important polarimetric variable that should not be ignored in precipitation estimations that are based on specific differential phase KDP, especially at shorter radar wavelengths. Moreover, δ bears important information about the dominant size of raindrops and wet snowflakes in the melting layer. New methods for estimating δ in rain and in the melting layer are suggested. The method for estimating δ in rain is based on a modified version of the "ZPHI" algorithm and provides reasonably robust estimates of δ and KDP in pure rain except in regions where the total measured differential phase FDP behaves erratically, such as areas affected by nonuniform beam filling or low signal-to-noise ratio. The method for estimating δ in the melting layer results in reliable estimates of δ in stratiform precipitation and requires azimuthal averaging of radial profiles of φDR at high antenna elevations. Comparisons with large disdrometer datasets collected in Oklahoma and Germany confirm a strong interdependence between δ and differential reflectivity ZDR. Because δ is immune to attenuation, partial beam blockage, and radar miscalibration, the strong correlation between ZDR and δ is of interest for quantitative precipitation estimation: δ and ZDR are differently affected by the particle size distribution (PSD) and thus may complement each other for PSD moment estimation. Furthermore, the magnitude of δ can be utilized as an important calibration parameter for improving microphysical models of the melting layer.
AB - On the basis of simulations and observations made with polarimetric radars operating at X, C, and S bands, the backscatter differential phase δ has been explored; δ has been identified as an important polarimetric variable that should not be ignored in precipitation estimations that are based on specific differential phase KDP, especially at shorter radar wavelengths. Moreover, δ bears important information about the dominant size of raindrops and wet snowflakes in the melting layer. New methods for estimating δ in rain and in the melting layer are suggested. The method for estimating δ in rain is based on a modified version of the "ZPHI" algorithm and provides reasonably robust estimates of δ and KDP in pure rain except in regions where the total measured differential phase FDP behaves erratically, such as areas affected by nonuniform beam filling or low signal-to-noise ratio. The method for estimating δ in the melting layer results in reliable estimates of δ in stratiform precipitation and requires azimuthal averaging of radial profiles of φDR at high antenna elevations. Comparisons with large disdrometer datasets collected in Oklahoma and Germany confirm a strong interdependence between δ and differential reflectivity ZDR. Because δ is immune to attenuation, partial beam blockage, and radar miscalibration, the strong correlation between ZDR and δ is of interest for quantitative precipitation estimation: δ and ZDR are differently affected by the particle size distribution (PSD) and thus may complement each other for PSD moment estimation. Furthermore, the magnitude of δ can be utilized as an important calibration parameter for improving microphysical models of the melting layer.
UR - http://www.scopus.com/inward/record.url?scp=84888408392&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=84888408392&partnerID=8YFLogxK
U2 - 10.1175/JAMC-D-13-0124.1
DO - 10.1175/JAMC-D-13-0124.1
M3 - Article
AN - SCOPUS:84888408392
SN - 1558-8424
VL - 52
SP - 2529
EP - 2548
JO - Journal of Applied Meteorology and Climatology
JF - Journal of Applied Meteorology and Climatology
IS - 11
ER -