Bactericidal effects of hematoporphyrin monomethyl ether-mediated photosensitization against pathogenic communities from supragingival plaque

Yi Sun, Defeng Xing, Lanhua Shen, Miao Sun, Ming Fang, Liangjia Bi, Yanjiao Sui, Zhiguo Zhang, Wenwu Cao

Research output: Contribution to journalArticlepeer-review

18 Scopus citations

Abstract

Photodynamic antimicrobial chemotherapy (PACT) is proposed as a potential candidate to inactivate pathogens in localized infections due to the rapid evolution of bacterial resistance. The treatment modality utilizes nontoxic agents called photosensitizers and harmless visible light to generate reactive oxygen species which result in microbial cells' killing. Hematoporphyrin monomethyl ether (HMME) as a novel and affordable photosensitizer has been used in treating various clinical diseases for years, but few applications in infection. In this report, we studied the bactericidal effects of the HMME-mediated photodynamic reaction on the pathogenic microbes in supragingival plaque which can lead to many oral infectious diseases such as caries, gingivitis, and so on. Our findings demonstrated that HMME promoted an effective action in bacterial reduction with the application of laser energy. Moreover, the antimicrobial activities were dramatically enhanced as the HMME concentration and exposure time were increased, but reached a plateau when matched the appropriate agent concentration and illumination. It was found that the survival fraction of microorganisms is exponentially dependent on the product of HMME concentration and irradiation time. These promising results suggest the HMME may be an excellently cost-effective photosensitizing agent for mediating PACT in the treatment of supragingival plaque-related diseases. An optimized HMME concentration and irradiation time has been found to achieve the best results under our experimental conditions. The high HMME concentration matching short curative time, or vice versa, can achieve the similar therapeutic effect, which may provide more flexible treatment plans according to specific conditions.

Original languageEnglish (US)
Pages (from-to)5079-5087
Number of pages9
JournalApplied Microbiology and Biotechnology
Volume97
Issue number11
DOIs
StatePublished - Jun 2013

All Science Journal Classification (ASJC) codes

  • Biotechnology
  • Applied Microbiology and Biotechnology

Fingerprint

Dive into the research topics of 'Bactericidal effects of hematoporphyrin monomethyl ether-mediated photosensitization against pathogenic communities from supragingival plaque'. Together they form a unique fingerprint.

Cite this