TY - JOUR
T1 - Balanced fertilization decreases environmental filtering on soil bacterial community assemblage in North China
AU - Feng, Youzhi
AU - Guo, Zhiying
AU - Zhong, Linghao
AU - Zhao, Fei
AU - Zhang, Jiabao
AU - Lin, Xiangui
N1 - Funding Information:
This work was supported by National Natural Science Foundation of China (Project Nos. 41771294, 41671267, and 41430859), National Key R&D Program (2016YFD0200306), the CAS Strategic Priority Research Program (Project No. XDB15020103), National Basic Research Program (973 Program) (Grant No. 2014CB954500), Knowledge Innovation Program of Chinese Academy of Sciences (Grant No. ISSASIP1639), and the Youth Innovation Promotion Association, CAS (Member No. 2014271).
Publisher Copyright:
© 2017 Feng, Guo, Zhong, Zhao, Zhang and Lin.
PY - 2017/12/1
Y1 - 2017/12/1
N2 - Although increasing evidences have emerged for responses of soil microorganisms to fertilizations, the knowledge regarding community assemblages that cause variations in composition is still lacking, as well as the possible feedback to soil fertility. Phylogenetic conservatism of species indicates their similar environmental preferences and/or function traits and phylogenetic signals further can infer community assemblages and influenced ecological processes. Here, we calculated the mean pairwise phylogenetic distance and nearest relative index, characterizing phylogenetic signal and the undergone ecological process to evaluate the community assembly of soil bacterial phylotypes in 20-year fertilized soils. The bacterial community assembly is structured by environmental filtering, regardless of fertilization regime. Soil phosphorous (P) availability imposes selection on community assemblage and influences their community turnover among fertilizations. When P nutrient lacks, the effect of environmental filtering becomes stronger, hence bacterial functional traits become more coherent; this process results into increased intraspecific interactions characterized by co-occurrence network analysis. In contrast, when P nutrient becomes abundant, the environmental selection is mitigated; function traits are evened. This process reduces intraspecific interactions and increases carbon sequestration efficiency, which is finally of great favor to the increases in soil fertility. This study has made the first attempt, at the bacterial level, to understand how fertilization affects agroecosystems. When more phylogenetic information on how nutrient cycling-related microbes respond to fertilization becomes available, the systematic knowledge will eventually provide guidance to optimal fertilization strategies.
AB - Although increasing evidences have emerged for responses of soil microorganisms to fertilizations, the knowledge regarding community assemblages that cause variations in composition is still lacking, as well as the possible feedback to soil fertility. Phylogenetic conservatism of species indicates their similar environmental preferences and/or function traits and phylogenetic signals further can infer community assemblages and influenced ecological processes. Here, we calculated the mean pairwise phylogenetic distance and nearest relative index, characterizing phylogenetic signal and the undergone ecological process to evaluate the community assembly of soil bacterial phylotypes in 20-year fertilized soils. The bacterial community assembly is structured by environmental filtering, regardless of fertilization regime. Soil phosphorous (P) availability imposes selection on community assemblage and influences their community turnover among fertilizations. When P nutrient lacks, the effect of environmental filtering becomes stronger, hence bacterial functional traits become more coherent; this process results into increased intraspecific interactions characterized by co-occurrence network analysis. In contrast, when P nutrient becomes abundant, the environmental selection is mitigated; function traits are evened. This process reduces intraspecific interactions and increases carbon sequestration efficiency, which is finally of great favor to the increases in soil fertility. This study has made the first attempt, at the bacterial level, to understand how fertilization affects agroecosystems. When more phylogenetic information on how nutrient cycling-related microbes respond to fertilization becomes available, the systematic knowledge will eventually provide guidance to optimal fertilization strategies.
UR - http://www.scopus.com/inward/record.url?scp=85036497388&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85036497388&partnerID=8YFLogxK
U2 - 10.3389/fmicb.2017.02376
DO - 10.3389/fmicb.2017.02376
M3 - Article
C2 - 29250052
AN - SCOPUS:85036497388
SN - 1664-302X
VL - 8
JO - Frontiers in Microbiology
JF - Frontiers in Microbiology
IS - DEC
M1 - 2376
ER -