Bare electrodynamic tether ground simulations in a dense, high-speed plasma flow

Brian E. Gilchrist, Sven G. Bilén, Travis A. Patrick, Jonathan L. Van Noord

Research output: Contribution to conferencePaperpeer-review

7 Scopus citations


We describe chamber tests of simulated electrodynamic tethers (EDTs) of different geometries operating in a dense, high-speed plasma. The geometries tested were cylindrical, flat-ribbon, and sparse-ribbon or mesh. Several important conclusions can be drawn from the tests as follows: the cylinder collected currents close to what would be predicted via orbital-motion-limited (OML) current collection theory. The tape tether had comparable current levels to a theoretical equal area OML cylinder collector. However, I-V behavior clearly is different at nearest distances (~ 15 λD tape width) as compared to furthest test distances (~ 6 λD tape width). The tape tether did better than a theoretical equal mass solid cylinder. A knee in the I-V curves can be seen in the tape/mesh data at a potential that is close to the estimated energy of the incoming beam of ions, at least for the closest distances where Debye length is smallest. Below this knee the current increases rapidly as voltage is increased. Above the knee the current increases at a rate one might expect from OML current-collection models depending on the relative width. This likely is an example of high-speed plasma flow effect. Perpendicular tape orientation performed slightly better than parallel.

Original languageEnglish (US)
StatePublished - 2000
Event36th AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit 2000 - Huntsville, AL, United States
Duration: Jul 16 2000Jul 19 2000


Other36th AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit 2000
Country/TerritoryUnited States
CityHuntsville, AL

All Science Journal Classification (ASJC) codes

  • Energy Engineering and Power Technology
  • Aerospace Engineering
  • Control and Systems Engineering
  • Electrical and Electronic Engineering
  • Mechanical Engineering
  • Space and Planetary Science


Dive into the research topics of 'Bare electrodynamic tether ground simulations in a dense, high-speed plasma flow'. Together they form a unique fingerprint.

Cite this