Battery health-conscious online power management for stochastic datacenter demand response

Abdullah Al Mamun, Iyswarya Narayanan, Di Wang, Anand Sivasubramaniam, Hosam K. Fathy

Research output: Chapter in Book/Report/Conference proceedingConference contribution

12 Scopus citations

Abstract

This paper presents a stochastic control framework for optimizing datacenter power management. The paper focuses on datacenters employing lithium-ion batteries for demand response. The use of batteries for demand response can reduce electricity costs, at the expense of battery degradation. We minimize this degradation using a control policy that takes into account uncertainties in power demand. We perform this optimization using a second-order model of battery charge dynamics, coupled with a physics-based model of battery aging via solid-electrolyte interphase (SEI) growth. To the best of our knowledge, this is the first study that uses battery models capturing diffusion dynamics and nonlinear aging effects, together with a model of demand uncertainty, for datacenter energy management. We formulate this as a stochastic dynamic programming (SDP) problem, where uncertain power demand is modeled as a Markov chain. The resulting control policy keeps grid power within a predefined range while minimizing battery degradation.

Original languageEnglish (US)
Title of host publication2016 American Control Conference, ACC 2016
PublisherInstitute of Electrical and Electronics Engineers Inc.
Pages3206-3211
Number of pages6
ISBN (Electronic)9781467386821
DOIs
StatePublished - Jul 28 2016
Event2016 American Control Conference, ACC 2016 - Boston, United States
Duration: Jul 6 2016Jul 8 2016

Publication series

NameProceedings of the American Control Conference
Volume2016-July
ISSN (Print)0743-1619

Other

Other2016 American Control Conference, ACC 2016
Country/TerritoryUnited States
CityBoston
Period7/6/167/8/16

All Science Journal Classification (ASJC) codes

  • Electrical and Electronic Engineering

Fingerprint

Dive into the research topics of 'Battery health-conscious online power management for stochastic datacenter demand response'. Together they form a unique fingerprint.

Cite this