Bayesian Model-Based Offline Reinforcement Learning for Product Allocation

Porter Jenkins, Hua Wei, J. Stockton Jenkins, Zhenhui Li

Research output: Chapter in Book/Report/Conference proceedingConference contribution

3 Scopus citations

Abstract

Product allocation in retail is the process of placing products throughout a store to connect consumers with relevant products. Discovering a good allocation strategy is challenging due to the scarcity of data and the high cost of experimentation in the physical world. Some work explores Reinforcement learning (RL) as a solution, but these approaches are often limited because of the sim2real problem. Learning policies from logged trajectories of a system is a key step forward for RL in physical systems. Recent work has shown that model-based offline RL can improve the effectiveness of offline policy estimation through uncertainty-penalized exploration. However, existing work assumes a continuous state space and access to a covariance matrix of the environment dynamics, which is not possible in the discrete case. To solve this problem, we propose a Bayesian model-based technique that naturally produces probabilistic estimates of the environment dynamics via the posterior predictive distribution, which we use for uncertainty-penalized exploration. We call our approach Posterior Penalized Offline Policy Optimization (PPOPO). We show that our world model better fits historical data due to informative priors, and that PPOPO outperforms other offline techniques in simulation and against real-world data.

Original languageEnglish (US)
Title of host publicationIAAI-22, EAAI-22, AAAI-22 Special Programs and Special Track, Student Papers and Demonstrations
PublisherAssociation for the Advancement of Artificial Intelligence
Pages12531-12537
Number of pages7
ISBN (Electronic)1577358767, 9781577358763
StatePublished - Jun 30 2022
Event36th AAAI Conference on Artificial Intelligence, AAAI 2022 - Virtual, Online
Duration: Feb 22 2022Mar 1 2022

Publication series

NameProceedings of the 36th AAAI Conference on Artificial Intelligence, AAAI 2022
Volume36

Conference

Conference36th AAAI Conference on Artificial Intelligence, AAAI 2022
CityVirtual, Online
Period2/22/223/1/22

All Science Journal Classification (ASJC) codes

  • Artificial Intelligence

Cite this