Abstract
Many psychological concepts are unobserved and usually represented as latent factors apprehended through multiple observed indicators. When multiple-subject multivariate time series data are available, dynamic factor analysis models with random effects offer one way of modeling patterns of within- and between-person variations by combining factor analysis and time series analysis at the factor level. Using the Dirichlet process (DP) as a nonparametric prior for individual-specific time series parameters further allows the distributional forms of these parameters to deviate from commonly imposed (e.g., normal or other symmetric) functional forms, arising as a result of these parameters’ restricted ranges. Given the complexity of such models, a thorough sensitivity analysis is critical but computationally prohibitive. We propose a Bayesian local influence method that allows for simultaneous sensitivity analysis of multiple modeling components within a single fitting of the model of choice. Five illustrations and an empirical example are provided to demonstrate the utility of the proposed approach in facilitating the detection of outlying cases and common sources of misspecification in dynamic factor analysis models, as well as identification of modeling components that are sensitive to changes in the DP prior specification.
Original language | English (US) |
---|---|
Pages (from-to) | 875-903 |
Number of pages | 29 |
Journal | Psychometrika |
Volume | 82 |
Issue number | 4 |
DOIs | |
State | Published - Dec 1 2017 |
All Science Journal Classification (ASJC) codes
- General Psychology
- Applied Mathematics