TY - GEN
T1 - Behavior of geogrid-reinforced railroad ballast particles under different loading configurations during initial compaction phase
AU - Liu, Shushu
AU - Huang, Hai
AU - Qiu, Tong
N1 - Publisher Copyright:
© Copyright 2017 ASME.
PY - 2017
Y1 - 2017
N2 - A railroad ballast or subballast layer is composed of unbound granular particles. The ballast/subballast initial compaction phase occurs immediately the construction or maintenance of a track structure is finished. The particles are densified into a more compact state after certain load repetitions. Geogrids are commonly used in railroad construction for reinforcement and stabilization. Currently heavy haul trains are increasing the loads experienced by the substructural layers, which changes behavior of reinforced granular particles. This paper presents a series of ballast box tests to investigate the behavior of geogrid-reinforced unbound granular particles with rectangular (BX) and triangular (TX) shaped geogrids during the compaction phase. Three types of tests were conducted: one without geogrid as a control, one with a sheet of rectangular shaped geogrid, and the other one with a sheet of triangular shaped geogrid. The geogrid was placed at the interface between subballast and subgrade layers. A half section of a railroad track structure consisting of two crossties, a rail, ballast, subballast and subgrade was constructed in a ballast box. Four wireless devices-"SmartRocks", embedded underneath the rail seat and underneath the shoulder at the interface of ballast-subballast, and subballast-subgrade layers, respectively, to monitor particle movement under cyclic loading. The behavior of the unbound aggregates in the three sections under two different loading configurations were compared. The results indicated that the inclusion of the geogrid significantly decreased accumulated vertical displacement on the ballast surface, ballast particle translation and rotation under a given repeated loading configuration. The results also demonstrated the effectiveness of the SmartRock device and its potential for monitoring behavior of ballast particles in the field.
AB - A railroad ballast or subballast layer is composed of unbound granular particles. The ballast/subballast initial compaction phase occurs immediately the construction or maintenance of a track structure is finished. The particles are densified into a more compact state after certain load repetitions. Geogrids are commonly used in railroad construction for reinforcement and stabilization. Currently heavy haul trains are increasing the loads experienced by the substructural layers, which changes behavior of reinforced granular particles. This paper presents a series of ballast box tests to investigate the behavior of geogrid-reinforced unbound granular particles with rectangular (BX) and triangular (TX) shaped geogrids during the compaction phase. Three types of tests were conducted: one without geogrid as a control, one with a sheet of rectangular shaped geogrid, and the other one with a sheet of triangular shaped geogrid. The geogrid was placed at the interface between subballast and subgrade layers. A half section of a railroad track structure consisting of two crossties, a rail, ballast, subballast and subgrade was constructed in a ballast box. Four wireless devices-"SmartRocks", embedded underneath the rail seat and underneath the shoulder at the interface of ballast-subballast, and subballast-subgrade layers, respectively, to monitor particle movement under cyclic loading. The behavior of the unbound aggregates in the three sections under two different loading configurations were compared. The results indicated that the inclusion of the geogrid significantly decreased accumulated vertical displacement on the ballast surface, ballast particle translation and rotation under a given repeated loading configuration. The results also demonstrated the effectiveness of the SmartRock device and its potential for monitoring behavior of ballast particles in the field.
UR - http://www.scopus.com/inward/record.url?scp=85026827721&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85026827721&partnerID=8YFLogxK
U2 - 10.1115/JRC2017-2218
DO - 10.1115/JRC2017-2218
M3 - Conference contribution
AN - SCOPUS:85026827721
T3 - 2017 Joint Rail Conference, JRC 2017
BT - 2017 Joint Rail Conference, JRC 2017
PB - American Society of Mechanical Engineers
T2 - 2017 Joint Rail Conference, JRC 2017
Y2 - 4 April 2017 through 7 April 2017
ER -