TY - JOUR
T1 - Berry phase of the composite-fermion Fermi sea
T2 - Effect of Landau-level mixing
AU - Pu, Songyang
AU - Fremling, Mikael
AU - Jain, J. K.
N1 - Publisher Copyright:
© 2018 American Physical Society.
PY - 2018/8/3
Y1 - 2018/8/3
N2 - We construct explicit lowest-Landau-level wave functions for the composite-fermion Fermi sea and its low-energy excitations following a recently developed approach [Pu, Wu, and Jain, Phys. Rev. B 96, 195302 (2017)2469-995010.1103/PhysRevB.96.195302] and demonstrate them to be very accurate representations of the Coulomb eigenstates. We further ask how the Berry phase associated with a closed loop around the Fermi circle, predicted to be π in a Dirac composite fermion theory satisfying particle-hole symmetry [D. T. Son, Phys. Rev. X 5, 031027 (2015)2160-330810.1103/PhysRevX.5.031027], is affected by Landau-level mixing. For this purpose, we consider a simple model wherein we determine the variational ground state as a function of Landau-level mixing within the space spanned by two basis functions: the lowest-Landau-level projected and the unprojected composite-fermion Fermi sea wave functions. We evaluate Berry phase for a path around the Fermi circle within this model following a recent prescription, and find that it rotates rapidly as a function of Landau-level mixing. We also consider the effect of a particle-hole symmetry-breaking three-body interaction on the Berry phase while confining the Hilbert space to the lowest Landau level. Our study deepens the connection between the π Berry phase and the exact particle-hole symmetry in the lowest Landau level.
AB - We construct explicit lowest-Landau-level wave functions for the composite-fermion Fermi sea and its low-energy excitations following a recently developed approach [Pu, Wu, and Jain, Phys. Rev. B 96, 195302 (2017)2469-995010.1103/PhysRevB.96.195302] and demonstrate them to be very accurate representations of the Coulomb eigenstates. We further ask how the Berry phase associated with a closed loop around the Fermi circle, predicted to be π in a Dirac composite fermion theory satisfying particle-hole symmetry [D. T. Son, Phys. Rev. X 5, 031027 (2015)2160-330810.1103/PhysRevX.5.031027], is affected by Landau-level mixing. For this purpose, we consider a simple model wherein we determine the variational ground state as a function of Landau-level mixing within the space spanned by two basis functions: the lowest-Landau-level projected and the unprojected composite-fermion Fermi sea wave functions. We evaluate Berry phase for a path around the Fermi circle within this model following a recent prescription, and find that it rotates rapidly as a function of Landau-level mixing. We also consider the effect of a particle-hole symmetry-breaking three-body interaction on the Berry phase while confining the Hilbert space to the lowest Landau level. Our study deepens the connection between the π Berry phase and the exact particle-hole symmetry in the lowest Landau level.
UR - http://www.scopus.com/inward/record.url?scp=85051467152&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85051467152&partnerID=8YFLogxK
U2 - 10.1103/PhysRevB.98.075304
DO - 10.1103/PhysRevB.98.075304
M3 - Article
AN - SCOPUS:85051467152
SN - 2469-9950
VL - 98
JO - Physical Review B
JF - Physical Review B
IS - 7
M1 - 075304
ER -