TY - JOUR
T1 - Bif-1/Endophilin B1
T2 - A candidate for crescent driving force in autophagy
AU - Takahashi, Y.
AU - Meyerkord, C. L.
AU - Wang, H. G.
N1 - Funding Information:
Acknowledgements. This work is supported by grants from the James & Esther King Biomedical Research Program to Y.T., National Institutes of Health, American Cancer Society, and Flight Attendant Medical Research Institute to H.G.W.
PY - 2009
Y1 - 2009
N2 - Autophagy is an intracellular bulk degradation system that plays a vital role in maintaining cellular homeostasis. This degradation process involves dynamic membrane rearrangements resulting in the formation of double-membraned autophagosomes. However, the driving force for generating curvature and deformation of isolation membranes remains a mystery. Bax-interacting factor 1 (Bif-1), also known as SH3GLB1 or Endophilin B1, was originally discovered as a Bax-binding protein. Bif-1 contains an amino-terminal N-BAR (Bin-Amphiphysin-Rvs) domain and a carboxy-terminal SH3 (Src-homology 3) domain and shows membrane binding and bending activities. It has been shown that Beclin1 is involved in the nucleation of autophagosomal membranes through an unknown mechanism. It is interesting that, Bif-1 forms a complex with Beclin1 through ultraviolet irradiation resistant-associated gene (UVRAG) and promotes the activation of the class III PI3 kinase, Vps34, in mammalian cells. In response to nutrient starvation, Bif-1 accumulates in punctate foci where it co-localizes with LC3, Atg5, and Atg9. Furthermore, Bif-1-positive, crescent-shaped small vesicles expand by recruiting and fusing with Atg9-positive small membranes to complete autophagosome formation. This review highlights the role of Bif-1 in the regulation of autophagy and discusses the potential involvement of Bif-1 in the biogenesis of membranes for the formation of autophagosomes.
AB - Autophagy is an intracellular bulk degradation system that plays a vital role in maintaining cellular homeostasis. This degradation process involves dynamic membrane rearrangements resulting in the formation of double-membraned autophagosomes. However, the driving force for generating curvature and deformation of isolation membranes remains a mystery. Bax-interacting factor 1 (Bif-1), also known as SH3GLB1 or Endophilin B1, was originally discovered as a Bax-binding protein. Bif-1 contains an amino-terminal N-BAR (Bin-Amphiphysin-Rvs) domain and a carboxy-terminal SH3 (Src-homology 3) domain and shows membrane binding and bending activities. It has been shown that Beclin1 is involved in the nucleation of autophagosomal membranes through an unknown mechanism. It is interesting that, Bif-1 forms a complex with Beclin1 through ultraviolet irradiation resistant-associated gene (UVRAG) and promotes the activation of the class III PI3 kinase, Vps34, in mammalian cells. In response to nutrient starvation, Bif-1 accumulates in punctate foci where it co-localizes with LC3, Atg5, and Atg9. Furthermore, Bif-1-positive, crescent-shaped small vesicles expand by recruiting and fusing with Atg9-positive small membranes to complete autophagosome formation. This review highlights the role of Bif-1 in the regulation of autophagy and discusses the potential involvement of Bif-1 in the biogenesis of membranes for the formation of autophagosomes.
UR - http://www.scopus.com/inward/record.url?scp=67549096696&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=67549096696&partnerID=8YFLogxK
U2 - 10.1038/cdd.2009.19
DO - 10.1038/cdd.2009.19
M3 - Review article
C2 - 19265852
AN - SCOPUS:67549096696
SN - 1350-9047
VL - 16
SP - 947
EP - 955
JO - Cell Death and Differentiation
JF - Cell Death and Differentiation
IS - 7
ER -