TY - GEN
T1 - Big data analytics for seismic fracture identification, using amplitude-based statistics
AU - Udegbe, Egbadon
AU - Morgan, Eugene
AU - Srinivasan, Sanjay
N1 - Funding Information:
Support in the form of NSF Grant 1546553 is gratefully acknowledged. The Niobrara fracture density log interpretations have been performed by Dr. Ahmed Ouenes (FracGeo) and his team. We are grateful for their support in making this data available for this study.
Publisher Copyright:
© Copyright 2018, Society of Petroleum Engineers.
PY - 2018
Y1 - 2018
N2 - Present day innovations in seismic acquisition tools and techniques have enabled the acquisition of detailed seismic datasets, which in many cases are extremely large (on the order of terabytes to petabytes). However, data analysis tools for extracting information on critical subsurface features such as fractures are still evolving. Traditional methods rely on time-consuming iterative workflows, which involve computing seismic attributes, de-noising and expert interpretation. Additionally, with the increasingly widespread acquisition of time-lapse seismic surveys (4D), there is a heightened demand for reliable automated workflows to assist feature interpretation from seismic data. We present a novel data-driven tool for fast fracture identification in BIG post-stack seismic datasets, motivated by techniques developed for real-time face detection. The proposed algorithm computes spatiotemporal amplitude statistics using Haar-like bases, in order to characterize the seismic amplitude properties that correspond to fracture occurrence in a unit window or voxel. Under this approach, the amplitude data is decomposed into a collection of simple-to-calculate "mini-attributes", which carry information on the amplitude gradient and curvature characteristics at varying locations and scales. These features then serve as inputs to a cascade of boosted classification tree models, which select and combine the most discriminative features to develop a probabilistic binary classification model. This overall approach helps to eliminate the computationally-intensive and subjective use of ad-hoc seismic attributes in existing approaches. We first demonstrate the viability of the proposed methodology for identifying discrete macro-fractures in a 2D synthetic seismic dataset. Next, we validate the approach using 3D post-stack seismic data from the Niobrara Shale interval within the Teapot Dome field. We show the applicability of the proposed framework for identifying sub-seismic fractures, by considering the amplitude profile adjacent to interpreted fullbore microimage (FMI) well log data. The upscaled spatial distribution of the predicted fractures shows agreement with existing geological studies and align with interpreted large-scale faults within the interval of interest.
AB - Present day innovations in seismic acquisition tools and techniques have enabled the acquisition of detailed seismic datasets, which in many cases are extremely large (on the order of terabytes to petabytes). However, data analysis tools for extracting information on critical subsurface features such as fractures are still evolving. Traditional methods rely on time-consuming iterative workflows, which involve computing seismic attributes, de-noising and expert interpretation. Additionally, with the increasingly widespread acquisition of time-lapse seismic surveys (4D), there is a heightened demand for reliable automated workflows to assist feature interpretation from seismic data. We present a novel data-driven tool for fast fracture identification in BIG post-stack seismic datasets, motivated by techniques developed for real-time face detection. The proposed algorithm computes spatiotemporal amplitude statistics using Haar-like bases, in order to characterize the seismic amplitude properties that correspond to fracture occurrence in a unit window or voxel. Under this approach, the amplitude data is decomposed into a collection of simple-to-calculate "mini-attributes", which carry information on the amplitude gradient and curvature characteristics at varying locations and scales. These features then serve as inputs to a cascade of boosted classification tree models, which select and combine the most discriminative features to develop a probabilistic binary classification model. This overall approach helps to eliminate the computationally-intensive and subjective use of ad-hoc seismic attributes in existing approaches. We first demonstrate the viability of the proposed methodology for identifying discrete macro-fractures in a 2D synthetic seismic dataset. Next, we validate the approach using 3D post-stack seismic data from the Niobrara Shale interval within the Teapot Dome field. We show the applicability of the proposed framework for identifying sub-seismic fractures, by considering the amplitude profile adjacent to interpreted fullbore microimage (FMI) well log data. The upscaled spatial distribution of the predicted fractures shows agreement with existing geological studies and align with interpreted large-scale faults within the interval of interest.
UR - http://www.scopus.com/inward/record.url?scp=85059759985&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85059759985&partnerID=8YFLogxK
U2 - 10.2118/191668-ms
DO - 10.2118/191668-ms
M3 - Conference contribution
AN - SCOPUS:85059759985
T3 - Proceedings - SPE Annual Technical Conference and Exhibition
BT - SPE Annual Technical Conference and Exhibition 2018, ATCE 2018
PB - Society of Petroleum Engineers (SPE)
T2 - SPE Annual Technical Conference and Exhibition 2018, ATCE 2018
Y2 - 24 September 2018 through 26 September 2018
ER -