Biodegradable elastomers and silicon nanomembranes/nanoribbons for stretchable, transient electronics, and biosensors

Suk Won Hwang, Chi Hwan Lee, Huanyu Cheng, Jae Woong Jeong, Seung Kyun Kang, Jae Hwan Kim, Jiho Shin, Jian Yang, Zhuangjian Liu, Guillermo A. Ameer, Yonggang Huang, John A. Rogers

Research output: Contribution to journalArticlepeer-review

302 Scopus citations

Abstract

Transient electronics represents an emerging class of technology that exploits materials and/or device constructs that are capable of physically disappearing or disintegrating in a controlled manner at programmed rates or times. Inorganic semiconductor nanomaterials such as silicon nanomembranes/nanoribbons provide attractive choices for active elements in transistors, diodes and other essential components of overall systems that dissolve completely by hydrolysis in biofluids or groundwater. We describe here materials, mechanics, and design layouts to achieve this type of technology in stretchable configurations with biodegradable elastomers for substrate/encapsulation layers. Experimental and theoretical results illuminate the mechanical properties under large strain deformation. Circuit characterization of complementary metal-oxide-semiconductor inverters and individual transistors under various levels of applied loads validates the design strategies. Examples of biosensors demonstrate possibilities for stretchable, transient devices in biomedical applications.

Original languageEnglish (US)
Pages (from-to)2801-2808
Number of pages8
JournalNano letters
Volume15
Issue number5
DOIs
StatePublished - May 13 2015

All Science Journal Classification (ASJC) codes

  • Bioengineering
  • General Chemistry
  • General Materials Science
  • Condensed Matter Physics
  • Mechanical Engineering

Fingerprint

Dive into the research topics of 'Biodegradable elastomers and silicon nanomembranes/nanoribbons for stretchable, transient electronics, and biosensors'. Together they form a unique fingerprint.

Cite this