TY - JOUR
T1 - Biogenesis of phycobiliproteins
T2 - II. CpcS-I and CpcU comprise the heterodimeric bilin lyase that attaches phycocyanobilin to CYS-82 of β-phycocyanin and CYS-81 of allophycocyanin subunits in Synechococcus sp. PCC 7002
AU - Saunée, Nicolle A.
AU - Williams, Shervonda R.
AU - Bryant, Donald A.
AU - Schluchter, Wendy M.
PY - 2008/3/21
Y1 - 2008/3/21
N2 - The Synechococcus sp. PCC 7002 genome encodes three genes, denoted cpcS-I, cpcU, cpcV, with sequence similarity to cpeS. CpcS-I copurified with His 6-tagged (HT) CpcU as a heterodimer, CpcSU. When CpcSU was assayed for bilin lyase activity in vitro with phycocyanobilin (PCB) and apophycocyanin, the reaction product had an absorbance maximum of 622 nmand was highly fluorescent (γmax = 643 nm). In control reactions with PCB and apophycocyanin, the products had absorption maxima at 635 nm and very low fluorescence yields, indicating they contained the more oxidized mesobiliverdin (Arciero, D. M., Bryant, D. A., and Glazer, A. N. (1988) J. Biol. Chem. 263, 18343-18349). Tryptic peptide mapping showed that the CpcSU-dependent reaction product had one major PCB-containing peptide that contained the PCB binding site Cys-82. The CpcSU lyase was also tested with recombinant apoHT-allophycocyanin (aporHT-AP) and PCB in vitro. AporHT-AP formed an ApcA/ApcB heterodimer with an apparent mass of ∼27 kDa. When aporHT-AP was incubated with PCB and CpcSU, the product had an absorbance maximum of 614 nm and a fluorescence emission maximum at 636 nm, the expected maxima for monomeric holo-AP. When no enzyme or CpcS-I or CpcU was added alone, the products had absorbance maxima between 645 and 647 nm and were not fluorescent. When these reaction products were analyzed by gel electrophoresis and zinc-enhanced fluorescence emission, only the reaction products from CpcSU had PCB attached to both AP subunits. Therefore, CpcSU is the bilin lyase-responsible for attachment of PCB to Cys-82 of CpcB and Cys-81 of ApcA and ApcB.
AB - The Synechococcus sp. PCC 7002 genome encodes three genes, denoted cpcS-I, cpcU, cpcV, with sequence similarity to cpeS. CpcS-I copurified with His 6-tagged (HT) CpcU as a heterodimer, CpcSU. When CpcSU was assayed for bilin lyase activity in vitro with phycocyanobilin (PCB) and apophycocyanin, the reaction product had an absorbance maximum of 622 nmand was highly fluorescent (γmax = 643 nm). In control reactions with PCB and apophycocyanin, the products had absorption maxima at 635 nm and very low fluorescence yields, indicating they contained the more oxidized mesobiliverdin (Arciero, D. M., Bryant, D. A., and Glazer, A. N. (1988) J. Biol. Chem. 263, 18343-18349). Tryptic peptide mapping showed that the CpcSU-dependent reaction product had one major PCB-containing peptide that contained the PCB binding site Cys-82. The CpcSU lyase was also tested with recombinant apoHT-allophycocyanin (aporHT-AP) and PCB in vitro. AporHT-AP formed an ApcA/ApcB heterodimer with an apparent mass of ∼27 kDa. When aporHT-AP was incubated with PCB and CpcSU, the product had an absorbance maximum of 614 nm and a fluorescence emission maximum at 636 nm, the expected maxima for monomeric holo-AP. When no enzyme or CpcS-I or CpcU was added alone, the products had absorbance maxima between 645 and 647 nm and were not fluorescent. When these reaction products were analyzed by gel electrophoresis and zinc-enhanced fluorescence emission, only the reaction products from CpcSU had PCB attached to both AP subunits. Therefore, CpcSU is the bilin lyase-responsible for attachment of PCB to Cys-82 of CpcB and Cys-81 of ApcA and ApcB.
UR - http://www.scopus.com/inward/record.url?scp=41049116313&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=41049116313&partnerID=8YFLogxK
U2 - 10.1074/jbc.M708165200
DO - 10.1074/jbc.M708165200
M3 - Article
C2 - 18199753
AN - SCOPUS:41049116313
SN - 0021-9258
VL - 283
SP - 7513
EP - 7522
JO - Journal of Biological Chemistry
JF - Journal of Biological Chemistry
IS - 12
ER -