Abstract
Reservoir computing is a highly efficient machine learning framework for processing temporal data by extracting input features and mapping them into higher dimensional spaces. Physical reservoirs have been realized using spintronic oscillators, atomic switch networks, volatile memristors, etc. However, these devices are intrinsically energy-dissipative due to their resistive nature, increasing their power consumption. Therefore, memcapacitive devices can provide a more energy-efficient approach. Herein, volatile biomembrane-based memcapacitors are leveraged as reservoirs to solve classification tasks and process time series in simulation and experimentally. This system achieves a 99.6% accuracy for spoken-digit classification and a normalized mean square error of (Formula presented.) in a second-order nonlinear regression task. Furthermore, to showcase the device's real-time temporal data processing capability, a 100% accuracy for an epilepsy detection problem is achieved. Most importantly, it is demonstrated that each memcapacitor consumes an average of 41.5 fJ of energy per spike, regardless of the selected input voltage pulse width, while maintaining an average power of 415 fW for a pulse width of 100 ms, orders of magnitude lower than those achieved by state-of-the-art devices. Lastly, it is believed that the biocompatible, soft nature of our memcapacitor renders it highly suitable for computing applications in biological environments.
Original language | English (US) |
---|---|
Article number | 2300346 |
Journal | Advanced Intelligent Systems |
Volume | 5 |
Issue number | 12 |
DOIs | |
State | Published - Dec 2023 |
All Science Journal Classification (ASJC) codes
- Artificial Intelligence
- Computer Vision and Pattern Recognition
- Human-Computer Interaction
- Mechanical Engineering
- Control and Systems Engineering
- Electrical and Electronic Engineering
- Materials Science (miscellaneous)