TY - GEN
T1 - Bistable compliant mechanism using magneto active elastomer actuation
AU - Crivaro, Adrienne
AU - Sheridan, Rob
AU - Frecker, Mary
AU - Simpson, Timothy W.
AU - Von Lockette, Paris
N1 - Publisher Copyright:
Copyright © 2014 by ASME.
PY - 2014
Y1 - 2014
N2 - In the emerging field of origami engineering, it is important to investigate ways to achieve large deformations to enable significant shape transformations. One way to achieve this is through the use of bistable mechanisms. The goal in this research is to investigate the feasibility and design of a compliant bistable mechanism that is actuated by magneto active elastomer (MAE) material. The MAE material has magnetic particles embedded in the material that are aligned during the curing process. When exposed to an external field, the material deforms to align the embedded particles with the field. We investigate actuation of the MAE material through the development of finite element analysis (FEA) models to predict the magnetic field required to snap the device from its first stable position to its second for various geometries and field strengths. The FEA model also predicts the displacement of the center of the mechanism as it moves from one position to the other to determine if the device is in fact bistable. These results help show the relationship between the substrate properties and the bistability of the device. Experimental results validate the FEA models and demonstrate the functionality of active materials to be used as actuators for such devices and applications of origami engineering.
AB - In the emerging field of origami engineering, it is important to investigate ways to achieve large deformations to enable significant shape transformations. One way to achieve this is through the use of bistable mechanisms. The goal in this research is to investigate the feasibility and design of a compliant bistable mechanism that is actuated by magneto active elastomer (MAE) material. The MAE material has magnetic particles embedded in the material that are aligned during the curing process. When exposed to an external field, the material deforms to align the embedded particles with the field. We investigate actuation of the MAE material through the development of finite element analysis (FEA) models to predict the magnetic field required to snap the device from its first stable position to its second for various geometries and field strengths. The FEA model also predicts the displacement of the center of the mechanism as it moves from one position to the other to determine if the device is in fact bistable. These results help show the relationship between the substrate properties and the bistability of the device. Experimental results validate the FEA models and demonstrate the functionality of active materials to be used as actuators for such devices and applications of origami engineering.
UR - http://www.scopus.com/inward/record.url?scp=84926059602&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=84926059602&partnerID=8YFLogxK
U2 - 10.1115/DETC201435007
DO - 10.1115/DETC201435007
M3 - Conference contribution
AN - SCOPUS:84926059602
T3 - Proceedings of the ASME Design Engineering Technical Conference
BT - 38th Mechanisms and Robotics Conference
PB - American Society of Mechanical Engineers (ASME)
T2 - ASME 2014 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, IDETC/CIE 2014
Y2 - 17 August 2014 through 20 August 2014
ER -