TY - JOUR
T1 - Boosting autofermentation rates and product yields with sodium stress cycling
T2 - Application to production of renewable fuels by cyanobacteria
AU - Carrieri, Damian
AU - Momot, Dariya
AU - Brasg, Ian A.
AU - Ananyev, Gennady
AU - Lenz, Oliver
AU - Bryant, Donald A.
AU - Dismukes, G. Charles
PY - 2010/10
Y1 - 2010/10
N2 - Sodium concentration cycling was examined as a new strategy forredistributing carbon storage products and increasing autofermentative product yields following photosynthetic carbon fixation in the cyanobacterium Arthrospira (Spirulina) maxima. The salt-tolerant hypercarbonate strain CS-328 was grown in a medium containing 0.24 to 1.24 M sodium, resulting in increased biosynthesis of soluble carbohydrates to up to 50% of the dry weight at 1.24 M sodium. Hypoionic stress during dark anaerobic metabolism (autofermentation) was induced by resuspending filaments in low-sodium (bi)carbonate buffer (0.21 M), which resulted in accelerated autofermentation rates. For cells grown in 1.24 M NaCl, the fermentative yields of acetate, ethanol, andformate increase substantially to 1.56, 0.75, and 1.54 mmol/(g [dry weight] of cells · day), respectively (36-, 121-, and 6-fold increases in rates relative to cells grown in 0.24 M NaCl). Catabolism of endogenous carbohydrate increased by approximately 2-fold uponhypoionic stress. For cultures grown at all salt concentrations, hydrogen was produced, but its yield did not correlate with increased catabolism of soluble carbohydrates. Instead, ethanol excretion becomes a preferred route for fermentative NADH reoxidation, together with intracellular accumulation of reduced products of acetyl coenzyme A (acetyl-CoA) formation when cells are hypoionically stressed. In the absence of hypoionic stress,hydrogen production is a major beneficial pathway for NAD+ regeneration without wasting carbonintermediates such as ethanol derived from acetyl- CoA. This switch presumably improves the overall cellular economy by retaining carbonwithin the cell until aerobic conditions return and the acetyl unit can be used for biosynthesis or oxidized via respiration for a much greater energy return.
AB - Sodium concentration cycling was examined as a new strategy forredistributing carbon storage products and increasing autofermentative product yields following photosynthetic carbon fixation in the cyanobacterium Arthrospira (Spirulina) maxima. The salt-tolerant hypercarbonate strain CS-328 was grown in a medium containing 0.24 to 1.24 M sodium, resulting in increased biosynthesis of soluble carbohydrates to up to 50% of the dry weight at 1.24 M sodium. Hypoionic stress during dark anaerobic metabolism (autofermentation) was induced by resuspending filaments in low-sodium (bi)carbonate buffer (0.21 M), which resulted in accelerated autofermentation rates. For cells grown in 1.24 M NaCl, the fermentative yields of acetate, ethanol, andformate increase substantially to 1.56, 0.75, and 1.54 mmol/(g [dry weight] of cells · day), respectively (36-, 121-, and 6-fold increases in rates relative to cells grown in 0.24 M NaCl). Catabolism of endogenous carbohydrate increased by approximately 2-fold uponhypoionic stress. For cultures grown at all salt concentrations, hydrogen was produced, but its yield did not correlate with increased catabolism of soluble carbohydrates. Instead, ethanol excretion becomes a preferred route for fermentative NADH reoxidation, together with intracellular accumulation of reduced products of acetyl coenzyme A (acetyl-CoA) formation when cells are hypoionically stressed. In the absence of hypoionic stress,hydrogen production is a major beneficial pathway for NAD+ regeneration without wasting carbonintermediates such as ethanol derived from acetyl- CoA. This switch presumably improves the overall cellular economy by retaining carbonwithin the cell until aerobic conditions return and the acetyl unit can be used for biosynthesis or oxidized via respiration for a much greater energy return.
UR - http://www.scopus.com/inward/record.url?scp=78049298617&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=78049298617&partnerID=8YFLogxK
U2 - 10.1128/AEM.00975-10
DO - 10.1128/AEM.00975-10
M3 - Article
C2 - 20693449
AN - SCOPUS:78049298617
SN - 0099-2240
VL - 76
SP - 6455
EP - 6462
JO - Applied and environmental microbiology
JF - Applied and environmental microbiology
IS - 19
ER -