Boosting Meta-Learning Cold-Start Recommendation with Graph Neural Network

Han Liu, Fenglong Ma, Hongxiang Lin, Hongyang Chen, Xiaotong Zhang, Lei Wang, Hong Yu, Xianchao Zhang

Research output: Chapter in Book/Report/Conference proceedingConference contribution

3 Scopus citations

Abstract

Meta-learning methods have shown to be effective in dealing with cold-start recommendation. However, most previous methods rely on an ideal assumption that there exists a similar data distribution between source and target tasks, which are unsuitable for the scenario that only extremely limited number of new user or item interactions are available. In this paper, we propose to boost meta-learning cold-start recommendation with graph neural network (MeGNN). First, it utilizes the global neighborhood translation learning to obtain consistent potential interactions for all new user and item nodes, which can refine their representations. Second, it employs the local neighborhood translation learning to predict specific potential interactions for each node, thus guaranteeing the personalized requirement. In experiments, we combine MeGNN with two representative meta-learning models MeLU and TaNP. Extensive results on two widely-used datasets show the superiority of MeGNN in four different scenarios.

Original languageEnglish (US)
Title of host publicationCIKM 2023 - Proceedings of the 32nd ACM International Conference on Information and Knowledge Management
PublisherAssociation for Computing Machinery
Pages4105-4109
Number of pages5
ISBN (Electronic)9798400701245
DOIs
StatePublished - Oct 21 2023
Event32nd ACM International Conference on Information and Knowledge Management, CIKM 2023 - Birmingham, United Kingdom
Duration: Oct 21 2023Oct 25 2023

Publication series

NameInternational Conference on Information and Knowledge Management, Proceedings

Conference

Conference32nd ACM International Conference on Information and Knowledge Management, CIKM 2023
Country/TerritoryUnited Kingdom
CityBirmingham
Period10/21/2310/25/23

All Science Journal Classification (ASJC) codes

  • General Business, Management and Accounting
  • General Decision Sciences

Fingerprint

Dive into the research topics of 'Boosting Meta-Learning Cold-Start Recommendation with Graph Neural Network'. Together they form a unique fingerprint.

Cite this